1
|
Xiao S, Tian M, Liao H, Xie J, Chai J, Li J, Nguyen T, Wu J, Gao Y, Li J, Chen X, Xu X, Qingwen W. The first Ranatuerin antimicrobial peptide with LPS-neutralizing and anti-inflammatory activities in vitro and in vivo. Life Sci 2025:123375. [PMID: 39788417 DOI: 10.1016/j.lfs.2025.123375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Pelophylax nigromaculata, common traditional Chinese medicinal material used for several hundreds of years, is one of the most widely distributed amphibians in China. In this study, a novel Ranatuerin-2 family antimicrobial peptide, Rana-2PN, was identified and characterized from its skin, and its structural characteristics and functional activities were studied extensively. First, Rana-2PN exhibited a broad spectrum of antimicrobial activity, displaying minimum inhibitory concentration (MIC) values ranging from 12.5 to 100 μM against all strains tested. Mechanistically, Rana-2PN exerted its bacteriostatic effects by binding to bacterial cells and inducing bacterial membrane rupture and subsequent bacterial death. Secondly, Rana-2PN effectively inhibited the inflammatory response in RAW264.7 cells induced by lipopolysaccharide (LPS) and reduced inflammation induced by carrageenan in mouse toes. Thus, Rana-2PN with LPS-neutralizing, anti-inflammatory, and antimicrobial properties, represents the first member of the Ranatuerin antimicrobial peptide family, and its discovery offers a promising therapeutic candidate for addressing inflammatory disorders resulting from bacterial infections.
Collapse
Affiliation(s)
- Shibai Xiao
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Maolin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hang Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianpeng Xie
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Jinqiao Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tienthanh Nguyen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yihan Gao
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiali Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wang Qingwen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
2
|
Córdoba L, López D, Mejía M, Guzmán F, Beltrán D, Carbonell B, Medina L. Antibacterial Activity of AXOTL-13, a Novel Peptide Identified from the Transcriptome of the Salamander Ambystoma mexicanum. Pharmaceutics 2024; 16:1445. [PMID: 39598568 PMCID: PMC11597150 DOI: 10.3390/pharmaceutics16111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Antimicrobial peptides are essential molecules in the innate immunity of various organisms and possess a broad spectrum of antimicrobial, antitumor, and immunomodulatory activities. Due to their multifunctionality, they are seen as an alternative for controlling bacterial infections. Although conventional antibiotics have improved health worldwide, their indiscriminate use has led to the emergence of resistant microorganisms. To discover new molecules with antimicrobial activity that could overcome the limitations of traditional antibiotics, this study aimed to identify antimicrobial peptides in Ambystoma mexicanum. Methods: In this study, hypothetical proteins encoded in the Ambystoma mexicanum transcriptome were predicted. These proteins were aligned with peptides reported in the Antimicrobial Peptide Database (APD3) using the Fasta36 program. After identifying peptide sequences with potential antibacterial activity, their expression was confirmed through conventional polymerase chain reaction (PCR) and then chemically synthesized. The antibacterial activity of the synthesized peptides was evaluated against Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. Results: A new antimicrobial peptide named AXOTL-13 was identified. AXOTL-13 is an amphipathic cationic alpha-helical peptide with the ability to inhibit the growth of Escherichia coli without causing hemolysis in red blood cells, with its action likely directed at the membrane, as suggested by morphological changes observed through scanning electron microscopy. Conclusions: This research is pioneering in evaluating the activity of antimicrobial peptides present in Ambystoma mexicanum and in specifically identifying one of these peptides. The findings will serve as a reference for future research in this field.
Collapse
Affiliation(s)
- Laura Córdoba
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| | - Daniela López
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| | - Mariana Mejía
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (F.G.); (D.B.)
| | - Dina Beltrán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (F.G.); (D.B.)
| | - Belfran Carbonell
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
- Departamento de Estudios Básicos Integrados, Facultad de Odontología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Laura Medina
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| |
Collapse
|
3
|
Mishra S, Sannigrahi A, Ruidas S, Chatterjee S, Roy K, Misra D, Maity BK, Paul R, Ghosh CK, Saha KD, Bhaumik A, Chattopadhyay K. Conformational Switch of a Peptide Provides a Novel Strategy to Design Peptide Loaded Porous Organic Polymer for Pyroptosis Pathway Mediated Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402953. [PMID: 38923392 DOI: 10.1002/smll.202402953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/24/2024] [Indexed: 06/28/2024]
Abstract
While peptide-based drug development is extensively explored, this strategy has limitations due to rapid excretion from the body (or shorter half-life in the body) and vulnerability to protease-mediated degradation. To overcome these limitations, a novel strategy for the development of a peptide-based anticancer agent is introduced, utilizing the conformation switch property of a chameleon sequence stretch (PEP1) derived from a mycobacterium secretory protein, MPT63. The selected peptide is then loaded into a new porous organic polymer (PG-DFC-POP) synthesized using phloroglucinol and a cresol derivative via a condensation reaction to deliver the peptide selectively to cancer cells. Utilizing ensemble and single-molecule approaches, this peptide undergoes a transition from a disordered to an alpha-helical conformation, triggered by the acidic environment within cancer cells that is demonstrated. This adopted alpha-helical conformation resulted in the formation of proteolysis-resistant oligomers, which showed efficient membrane pore-forming activity selectively for negatively charged phospholipids accumulated in cancer cell membranes. The experimental results demonstrated that the peptide-loaded PG-DFC-POP-PEP1 exhibited significant cytotoxicity in cancer cells, leading to cell death through the Pyroptosis pathway, which is established by monitoring numerous associated events starting from lysosome membrane damage to GSDMD-induced cell membrane demolition. This novel conformational switch-based drug design strategy is believed to have great potential in endogenous environment-responsive cancer therapy and the development of future drug candidates to mitigate cancers.
Collapse
Affiliation(s)
- Snehasis Mishra
- Department of Cell, Developmental, & Integrative Biology, University of Alabama, Birmingham, AL, 35233, USA
| | - Achinta Sannigrahi
- Molecular genetics department, University of Texas Southwestern Medical center, Dallas, TX, 75390, USA
| | - Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Sujan Chatterjee
- NIPM and SoLs, University of Nevada Las Vegas, Nevada, NV, 89154, USA
| | - Kamalesh Roy
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Deblina Misra
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Barun Kumar Maity
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rabindranath Paul
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Chandan Kumar Ghosh
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| |
Collapse
|
4
|
Antony A, Purayil AK, Olakkaran S, Dhannura S, Shekh S, Gowd KH, Gurushankara HP. Antimicrobial and antitumor properties of anuran peptide temporin-SHf induce apoptosis in A549 lung cancer cells. Amino Acids 2024; 56:12. [PMID: 38319435 PMCID: PMC10847208 DOI: 10.1007/s00726-023-03373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 02/07/2024]
Abstract
Temporin-SHf is a linear, ultra-short, hydrophobic, α-helix, and phe-rich cationic antimicrobial peptide. The antitumor activities and mechanism of temporin-SHf-induced cancer cell death are unknown. The temporin-SHf was synthesized by solid-phase Fmoc chemistry and antimicrobial and antitumor activities were investigated. Temporin-SHf was microbiocidal, non-hemolytic, and cytotoxic to human cancer cells but not to non-tumorigenic cells. It affected the cancer cells' lysosomal integrity and caused cell membrane damage. The temporin-SHf inhibited A549 cancer cell proliferation and migration. It is anti-angiogenic and causes cancer cell death through apoptosis. The molecular mechanism of action of temporin-SHf confirmed that it kills cancer cells by triggering caspase-dependent apoptosis through an intrinsic mitochondrial pathway. Owing to its short length and broad spectrum of antitumor activity, temporin-SHf is a promising candidate for developing a new class of anticancer drugs.
Collapse
Affiliation(s)
- Anet Antony
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, 671 320, India
- Department of Zoology, University of Calicut, Malappuram, Kerala, 673 635, India
| | - Anupama Kizhakke Purayil
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, 671 320, India
- Department of Molecular Biology, Kannur University, Dr. Janakiammal Campus, Thalasserry, Palayad, Kerala, 670 661, India
| | - Shilpa Olakkaran
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, 671 320, India
- Department of Zoology, University of Calicut, Malappuram, Kerala, 673 635, India
| | - Shweta Dhannura
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, 585 367, India
| | - Shamasoddin Shekh
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, 585 367, India
| | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, 585 367, India
| | | |
Collapse
|
5
|
Ma F, Song J, He M, Wang X. The Antimicrobial Peptide Merecidin Inhibit the Metastasis of Triple-Negative Breast Cancer by Obstructing EMT via miR-30d-5p/Vimentin. Technol Cancer Res Treat 2024; 23:15330338241281310. [PMID: 39267432 PMCID: PMC11402084 DOI: 10.1177/15330338241281310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
Purpose: To investigate the inhibitory effect of antimicrobial peptide merecidin on triple-negative breast cancer (TNBC) and the mechanism of inhibiting epithelial-mesenchymal transformation (EMT) by regulating miR-30d-5p/vimentin. Methods: TNBC cell lines (MDA-MB-231, MDA-MB-468) were treated with merecidin to assess proliferation, migration, invasion ability, and EMT. Confocal laser localization was used to examine the role of merecidin and TNBC cells. The relationship between merecidin and miR-30d-5p was determined through RT-qPCR and dual-luciferase reporter gene, and the relationship between merecidin and vimentin was verified through pulling down the experiment. The effects of miR-30d-5p on the migration and invasion ability of TNBC cells were confirmed through scratch and transwell experiments. Vimentin levels, tumor volume, shape, size, and weight were observed in the MDA-MB-231 subcutaneous tumor model in nude mice. Results: merecidin inhibited the proliferation, migration, invasion, and EMT of TNBC cells. merecidin was primarily located in the cytoplasm of TNBC cells, and the expression of miR-30d-5p was low in TNBC cells. merecidin significantly up-regulated the expression of miR-30d-5p. miR-30d-5p negatively regulated vimentin. merecidin could bind to vimentin in vitro. miR-30d-5p inhibited the migration and invasion ability of TNBC cells, while vimentin promoted their migration and invasion ability. Down-regulation of miR-30d-5p or overexpression of vimentin partially counteracted the inhibitory effects of merecidin on TNBC cell migration, invasion ability, and EMT. In nude mouse tumor models, merecidin significantly suppressed tumor growth. Conclusion: Merecidin effectively blocks the EMT process and inhibits the migration and invasion of TNBC cells by regulating miR-30d-5p/vimentin.
Collapse
Affiliation(s)
- Fei Ma
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - Jinxuan Song
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - Min He
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiuqing Wang
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Yao A, Liu T, Cai Y, Zhou S, Chen X, Zhou M, Ma C, Chen T, Shaw C, Wang L. Progressive Design of a Ranatuerin-2 Peptide from Amolops wuyiensis: Enhancement of Bioactivity and In Vivo Efficacy. Antibiotics (Basel) 2023; 13:5. [PMID: 38275314 PMCID: PMC10812557 DOI: 10.3390/antibiotics13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Antimicrobial peptides (AMPs) that exert multiple functions are considered promising candidates to combat the bacterial drug resistance crisis. Nowadays, targeted peptide modification has been widely recognised to improve biological activity and make up for deficiencies in clinical applications such as toxicity. In this study, a helix-loop peptide was isolated and identified from the skin secretion of the Wuyi torrent frog Amolops wuyiensis, namely, ranatuerin-2-AW (R2AW) (GFMDTAKNVAKNVAATLLDKLKCKITGGC). Target modifications were made to R2AW to study the structure-activity relationships and to optimise its bioactivities. Five analogues were progressively designed via residue substitution and truncation and the antibacterial and anticancer activities were evaluated. We found that the serine-substitution and cyclic-domain-deletion products showed similar antibacterial activity to the natural peptide R2AW, implying that the disulphide bridge and Rana box were dispensable for the antibacterial activity of ranatuerin-2 peptides. Notably, the cationicity- and hydrophobicity-enhanced variant, [Lys4,19, Leu20]R2AW(1-22)-NH2, exhibited significantly optimised antibacterial and anticancer activities. Additionally, it killed bacteria by membrane disruption at a highly efficient rate. Moreover, [Lys4,19, Leu20]R2AW(1-22)-NH2 exerted potential in vivo efficacy in a methicillin-resistant Staphylococcus aureus (MRSA)-infected waxworm model. Overall, this study demonstrated some rational design ideas for optimising the dual antibacterial and anticancer activities of ranatuerin-2 peptides and it proposes [Lys4,19, Leu20]R2AW(1-22)-NH2 as an appealing candidate for therapeutic development.
Collapse
Affiliation(s)
- Aifang Yao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Tianxing Liu
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Yuhai Cai
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Siqi Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (T.L.); (Y.C.); (S.Z.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| |
Collapse
|
7
|
Chen Q, Wu J, Li X, Ye Z, Yang H, Mu L. Amphibian-Derived Natural Anticancer Peptides and Proteins: Mechanism of Action, Application Strategies, and Prospects. Int J Mol Sci 2023; 24:13985. [PMID: 37762285 PMCID: PMC10530844 DOI: 10.3390/ijms241813985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is one of the major diseases that seriously threaten human life. Traditional anticancer therapies have achieved remarkable efficacy but have also some unavoidable side effects. Therefore, more and more research focuses on highly effective and less-toxic anticancer substances of natural origin. Amphibian skin is rich in active substances such as biogenic amines, alkaloids, alcohols, esters, peptides, and proteins, which play a role in various aspects such as anti-inflammatory, immunomodulatory, and anticancer functions, and are one of the critical sources of anticancer substances. Currently, a range of natural anticancer substances are known from various amphibians. This paper aims to review the physicochemical properties, anticancer mechanisms, and potential applications of these peptides and proteins to advance the identification and therapeutic use of natural anticancer agents.
Collapse
Affiliation(s)
| | | | | | | | - Hailong Yang
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Lixian Mu
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
8
|
Chen Z, Hong D, Li S, Jia Y. Novel Property Cytotoxicity and Mechanism of Food Preservative Brevilaterins against Human Gastric Cancer Cells. Foods 2023; 12:foods12081732. [PMID: 37107527 PMCID: PMC10137466 DOI: 10.3390/foods12081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Brevilaterins, antimicrobial peptides produced by Brevibacillus laterosporus, are regarded as excellent food preservatives and are popular as antimicrobial applications. Recent research has uncovered their potent cytotoxic effects against diverse cancer cells, thereby underscoring the pressing need for more extensive and intensive investigations into this use. In this study, we explored their novel function in inducing cytotoxicity to cancer cells and systematically investigated the mechanism of action of Brevilaterin B/C (BB/BC) in vivo. Proliferation, membrane permeability, and apoptotic rate were evaluated using CCK-8 assay, LDH assay, and Annexin V-FITC/PI kits. ROS levels and mitochondrial membrane potential were detected using the fluorescent probe DCFH-DA and JC-1. Our results demonstrated that both BB and BC at concentrations of 4-6 µg/mL significantly inhibited the proliferation and migration of gastric cancer cells BGC-823. Treatment with 4 µg/mL of BB/BC rapidly increased LDH levels in the supernatant of BGC-823 cells, leading to further investigation of the mechanism of apoptosis. We found that the apoptotic rate of BGC-823 cells significantly increased upon treatment with BB/BC, demonstrating their potent induction of apoptosis. BB/BC-induced ROS production in BGC-823 cells impaired their growth and induced apoptosis, indicating a close association between apoptosis and ROS elevation. Additionally, JC-1 aggregates rapidly accumulated after treatment with 4 µg/mL of BB/BC, suggesting changes in mitochondrial membrane potential and early apoptosis. Taken together, our findings revealed that BB and BC exhibit significant anticancer effects against gastric cancer cells, highlighting the promising potential of Brevilaterins as anticancer agents.
Collapse
Affiliation(s)
- Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Dan Hong
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
9
|
Pyrazole-Enriched Cationic Nanoparticles Induced Early- and Late-Stage Apoptosis in Neuroblastoma Cells at Sub-Micromolar Concentrations. Pharmaceuticals (Basel) 2023; 16:ph16030393. [PMID: 36986492 PMCID: PMC10056113 DOI: 10.3390/ph16030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Neuroblastoma (NB) is a severe form of tumor occurring mainly in young children and originating from nerve cells found in the abdomen or next to the spine. NB needs more effective and safer treatments, as the chance of survival against the aggressive form of this disease are very small. Moreover, when current treatments are successful, they are often responsible for unpleasant health problems which compromise the future and life of surviving children. As reported, cationic macromolecules have previously been found to be active against bacteria as membrane disruptors by interacting with the negative constituents of the surface of cancer cells, analogously inducing depolarization and permeabilization, provoking lethal damage to the cytoplasmic membrane, and cause loss of cytoplasmic content and consequently, cell death. Here, aiming to develop new curative options for counteracting NB cells, pyrazole-loaded cationic nanoparticles (NPs) (BBB4-G4K and CB1H-P7 NPs), recently reported as antibacterial agents, were assayed against IMR 32 and SHSY 5Y NB cell lines. Particularly, while BBB4-G4K NPs demonstrated low cytotoxicity against both NB cell lines, CB1H-P7 NPs were remarkably cytotoxic against both IMR 32 and SHSY 5Y cells (IC50 = 0.43–0.54 µM), causing both early-stage (66–85%) and late-stage apoptosis (52–65%). Interestingly, in the nano-formulation of CB1H using P7 NPs, the anticancer effects of CB1H and P7 were increased by 54–57 and 2.5–4-times, respectively against IMR 32 cells, and by 53–61 and 1.3–2 times against SHSY 5Y cells. Additionally, based on the IC50 values, CB1H-P7 was also 1-12-fold more potent than fenretinide, an experimental retinoid derivative in a phase III clinical trial, with remarkable antineoplastic and chemopreventive properties. Collectively, due to these results and their good selectivity for cancer cells (selectivity indices = 2.8–3.3), CB1H-P7 NPs represent an excellent template material for developing new treatment options against NB.
Collapse
|
10
|
Lerksuthirat T, On‐yam P, Chitphuk S, Stitchantrakul W, Newburg DS, Morrow AL, Hongeng S, Chiangjong W, Chutipongtanate S. ALA-A2 Is a Novel Anticancer Peptide Inspired by Alpha-Lactalbumin: A Discovery from a Computational Peptide Library, In Silico Anticancer Peptide Screening and In Vitro Experimental Validation. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200213. [PMID: 36910465 PMCID: PMC10000267 DOI: 10.1002/gch2.202200213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Anticancer peptides (ACPs) are rising as a new strategy for cancer therapy. However, traditional laboratory screening to find and identify novel ACPs from hundreds to thousands of peptides is costly and time consuming. Here, a sequential procedure is applied to identify candidate ACPs from a computer-generated peptide library inspired by alpha-lactalbumin, a milk protein with known anticancer properties. A total of 2688 distinct peptides, 5-25 amino acids in length, are generated from alpha-lactalbumin. In silico ACP screening using the physicochemical and structural filters and three machine learning models lead to the top candidate peptides ALA-A1 and ALA-A2. In vitro screening against five human cancer cell lines supports ALA-A2 as the positive hit. ALA-A2 selectively kills A549 lung cancer cells in a dose-dependent manner, with no hemolytic side effects, and acts as a cell penetrating peptide without membranolytic effects. Sequential window acquisition of all theorical fragment ions-proteomics and functional validation reveal that ALA-A2 induces autophagy to mediate lung cancer cell death. This approach to identify ALA-A2 is time and cost-effective. Further investigations are warranted to elucidate the exact intracellular targets of ALA-A2. Moreover, these findings support the use of larger computational peptide libraries built upon multiple proteins to further advance ACP research and development.
Collapse
Affiliation(s)
- Tassanee Lerksuthirat
- Research CenterFaculty of Medicine Ramathibodi HospitalMahidol UniversityBangkok10400Thailand
| | - Pasinee On‐yam
- Pediatric Translational Research UnitDepartment of PediatricsFaculty of Medicine Ramathibodi HospitalMahidol UniversityBangkok10400Thailand
- Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkok10400Thailand
| | - Sermsiri Chitphuk
- Research CenterFaculty of Medicine Ramathibodi HospitalMahidol UniversityBangkok10400Thailand
| | - Wasana Stitchantrakul
- Research CenterFaculty of Medicine Ramathibodi HospitalMahidol UniversityBangkok10400Thailand
| | - David S. Newburg
- Division of EpidemiologyDepartment of Environmental and Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOH45267USA
| | - Ardythe L. Morrow
- Division of EpidemiologyDepartment of Environmental and Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOH45267USA
- Division of Infectious DiseasesDepartment of PediatricsCincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOH45267USA
| | - Suradej Hongeng
- Division of Hematology and OncologyDepartment of PediatricsFaculty of Medicine Ramathibodi HospitalMahidol UniversityBangkok10400Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research UnitDepartment of PediatricsFaculty of Medicine Ramathibodi HospitalMahidol UniversityBangkok10400Thailand
| | - Somchai Chutipongtanate
- Pediatric Translational Research UnitDepartment of PediatricsFaculty of Medicine Ramathibodi HospitalMahidol UniversityBangkok10400Thailand
- Division of EpidemiologyDepartment of Environmental and Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOH45267USA
| |
Collapse
|
11
|
Zhang Y, Wang C, Zhang W, Li X. Bioactive peptides for anticancer therapies. BIOMATERIALS TRANSLATIONAL 2023; 4:5-17. [PMID: 37206303 PMCID: PMC10189813 DOI: 10.12336/biomatertransl.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 05/21/2023]
Abstract
Cancer is a serious concern in public health worldwide. Numerous modalities including surgery, radiotherapy, and chemotherapy, have been used for cancer therapies in clinic. Despite progress in anticancer therapies, the usage of these methods for cancer treatment is often related to deleterious side effects and multidrug resistance of conventional anticancer drugs, which have prompted the development of novel therapeutic methods. Anticancer peptides (ACPs), derived from naturally occurring and modified peptides, have received great attention in these years and emerge as novel therapeutic and diagnostic candidates for cancer therapies, because of several advantages over the current treatment modalities. In this review, the classification and properties of ACPs, the mode of action and mechanism of membrane disruption, as well as the natural sources of bioactive peptides with anticancer activities were summarised. Because of their high efficacy for inducing cancer cell death, certain ACPs have been developed to work as drugs and vaccines, evaluated in varied phases of clinical trials. We expect that this summary could facilitate the understanding and design of ACPs with increased specificity and toxicity towards malignant cells and with reduced side effects to normal cells.
Collapse
|
12
|
Brevilaterin B from Brevibacillus laterosporus has selective antitumor activity and induces apoptosis in epidermal cancer. World J Microbiol Biotechnol 2022; 38:201. [PMID: 35999383 DOI: 10.1007/s11274-022-03372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
Abstract
Brevilaterins as antimicrobial peptides (AMPs) secreted by a newly discovered species Brevibacillus laterosporus, had been demonstrated to display excellent antibacterial and antifungal activities; however, very limited information about their new bioactivity was ever developed. Herein, we discovered Brevilaterin B, an AMP produced by Br. laterosporus S62-9, exhibited a new anticancer activity and investigated its anticancer details. Proliferation, membrane permeability and apoptotic rate of cell lines were studied by methods of CCK-8 Assay, LDH Assay and Annexin V-FITC/PI Kits, respectively. ROS levels and mitochondrial membrane potential of tested cells were further detected through the fluorescent probes DCFH-DA and JC-1. Brevilaterin B exhibited broad-spectrum anticancer activity in a dose-dependent manner. It selectively inhibited the proliferation of epidermal cancer cell A431 but had no effect on its control normal cells in a dose of 2.0 µg/mL. In comparision, typical morphological characteristics of apoptosis and an apoptotic ratio of 71.0% in A431 were observed after treatment by 2.0-3.0 µg/mL of Brevilaterin B. The ROS levels increased by 21.3% and mitochondrial membrane potential reduced by 48.8% from A431 were further occurred, indicating Brevilaterin B's anticancer action was mainly focus on the mitochondrion of cancer cells. In total, Brevilaterin B we reported above maybe believed to be a potential application as an anticancer medicament, increasing its commercial value.
Collapse
|
13
|
Chen Z, Wang L, Hong D, Liu Y, Han P, Li S, Jia Y. Broad-spectrum cytotoxicity to cancer cells of Brevilaterin C from Brevibacillus laterosporus and its specific mechanism on human epidermal cancer cells. J Cell Biochem 2022; 123:1237-1246. [PMID: 35656936 DOI: 10.1002/jcb.30280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 12/29/2022]
Abstract
Antimicrobial peptides (AMP) from Brevibacillus laterosporus have good prospects as clinical treatments for cancer. Nevertheless, details about their anticancer spectrum and mode of cytotoxicity remain poorly understood. A newly found AMP (named Brevilaterin C) secreted by B. laterosporus S62-9 exhibited strong inhibition on almost cancer cell lines examined at a concentration of 8 µg/ml but was relatively safe for normal cells. We further systematically examined its cytotoxicity and mechanism toward human epidermal cancer cell A431. A dosage of 3 µg/ml of Brevilaterin C could significantly increase lactate dehydrogenase release of tumor cells. Moreover, it could remarkably increase the ratio of apoptosis and reactive oxygen species generation of A431, indicating effective induction of apoptosis. Moreover, the formation of JC-1 aggregates was effectively prevented by a low concentration of Brevilaterin C, indicating its effective induction of A431's apoptosis. Brevilaterin C exhibited broad-spectrum cytotoxicity to cancer cells, indicating a good potential prospect in the medical field.
Collapse
Affiliation(s)
- Zhou Chen
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, Haidian District, China
| | - Lulu Wang
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, Haidian District, China
| | - Dan Hong
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, Haidian District, China
| | - Yangliu Liu
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, Haidian District, China
| | - Panpan Han
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, Haidian District, China
| | - Siting Li
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, Haidian District, China
| | - Yingmin Jia
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, Haidian District, China
| |
Collapse
|
14
|
Lu C, Liu L, Ma C, Di L, Chen T. A novel antimicrobial peptide found in Pelophylax nigromaculatus. J Genet Eng Biotechnol 2022; 20:76. [PMID: 35606468 PMCID: PMC9127008 DOI: 10.1186/s43141-022-00366-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/12/2022] [Indexed: 01/13/2023]
Abstract
Background Many active peptides have been found in frog skin secretions. In this paper, our research focused on Pelophylax nigromaculatus and found a broad-spectrum antimicrobial peptide Nigrocin-PN based on the molecular cloning technique. Thereafter, the “Rana box” function was briefly studied by two mutated peptides (Nigrocin-M1 and Nigrocin-M2). Furthermore, in vitro and in vivo assays were used to characterize the peptide’s biofunctions, and the peptide’s function in treating multidrug-resistant pathogens was also studied. Results Nigrocin-PN not only displayed potent antimicrobial abilities in vitro but also significantly ameliorated pulmonary inflammation induced by Klebsiella pneumoniae in vivo. By comparing, leucine-substituted analogue Nigrocin-M1 only displayed bactericidal abilities towards gram-positive bacteria, while the shorter analogue Nigrocin-M2 lost this function. More strikingly, Nigrocin-PN exhibited synergistic effects with commonly used antibiotics; in vitro evolution experiments revealed that coadministration between Nigrocin-PN and ampicillin could delay Staphylococcus aureus antibiotic resistance acquisition. Kinetics and morphology studies indicate that antibacterial mechanisms involved membrane destruction. Furthermore, toxicities and anticancer abilities of these peptides were also studied; compared to two analogues, Nigrocin-PN showed mild haemolytic activity and indistinctive cytotoxicity towards normal cell lines HMEC-1 and HaCaT. Conclusions A broad-spectrum antimicrobial peptide Nigrocin-PN was discovered from the skin secretion of Pelophylax nigromaculatus. Structurally, “Rana box” played a crucial role in reducing toxicities without compromising antibacterial abilities, and Nigrocin-PN could be a desired therapeutic candidate. Graphical abstract ![]()
• For AMPs, disulphide bond can affect their biofunction and cytotoxicity. • Frog skin secretion is a reservoir to delve valuable peptides. • AMPs-antibiotics coadministration could be a strategy to delay drug resistance.
Collapse
|
15
|
Antony A, Olakkaran S, Purayil AK, Shekh S, Gowd KH, Gurushankara HP. Antitumor activity of Tigerinin-1: Necroptosis mediates toxicity in A549 cells. Biochim Biophys Acta Gen Subj 2022; 1866:130182. [DOI: 10.1016/j.bbagen.2022.130182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
16
|
Booth V. Deuterium Solid State NMR Studies of Intact Bacteria Treated With Antimicrobial Peptides. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 2:621572. [PMID: 35047897 PMCID: PMC8757836 DOI: 10.3389/fmedt.2020.621572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Solid state NMR has been tremendously useful in characterizing the structure and dynamics of model membranes composed of simple lipid mixtures. Model lipid studies employing solid state NMR have included important work revealing how membrane bilayer structure and dynamics are affected by molecules such as antimicrobial peptides (AMPs). However, solid state NMR need not be applied only to model membranes, but can also be used with living, intact cells. NMR of whole cells holds promise for helping resolve some unsolved mysteries about how bacteria interact with AMPs. This mini-review will focus on recent studies using 2H NMR to study how treatment with AMPs affect membranes in intact bacteria.
Collapse
Affiliation(s)
- Valerie Booth
- Department of Biochemistry and Department of Physics and Physical Oceanograpy, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
17
|
Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int J Mol Sci 2021; 22:11691. [PMID: 34769122 PMCID: PMC8583803 DOI: 10.3390/ijms222111691] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are distributed across all kingdoms of life and are an indispensable component of host defenses. They consist of predominantly short cationic peptides with a wide variety of structures and targets. Given the ever-emerging resistance of various pathogens to existing antimicrobial therapies, AMPs have recently attracted extensive interest as potential therapeutic agents. As the discovery of new AMPs has increased, many databases specializing in AMPs have been developed to collect both fundamental and pharmacological information. In this review, we summarize the sources, structures, modes of action, and classifications of AMPs. Additionally, we examine current AMP databases, compare valuable computational tools used to predict antimicrobial activity and mechanisms of action, and highlight new machine learning approaches that can be employed to improve AMP activity to combat global antimicrobial resistance.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan;
| | - Xukai Jiang
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Phillip J. Bergen
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| | - Yan Zhu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| |
Collapse
|
18
|
Ma Y, Yao A, Chen X, Wang L, Ma C, Xi X, Chen T, Shaw C, Zhou M. Generation of truncated derivatives through in silico enzymatic digest of peptide GV30 target MRSA both in vitro and in vivo. Comput Struct Biotechnol J 2021; 19:4984-4996. [PMID: 34584638 PMCID: PMC8441110 DOI: 10.1016/j.csbj.2021.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023] Open
Abstract
A novel host-defence peptide GV30 was identified from the frog skin secretion of Hylarana guentheri. Seven short AMPs were generated by in silico enzymatic digest of GV30 using an online proteomic bioinformatic tool PeptideCutter in ExPASy server. Two truncated products, GV23 and GV21, exhibited an improved antibacterial effect against MRSA in vitro and demonstrated a faster bactericidal effect than the parent peptide. GV 21 was found to have a better in vivo anti-MRSA activity and retain the good antibacterial activity under salt and serum conditions, along with lower toxicity.
Methicillin-resistant Staphylococcus aureus (MRSA) causing serious hospital-acquired infections and skin infections has become a “superbug” in clinical treatment. Although the clinical treatment of MRSA is continuously improving, due to its unceasing global spread, MRSA has produced much heated discussion and focused study, therefore suggesting an urgent task to find new antibacterial drugs to combat this issue. Antimicrobial peptides (AMPs) are used as the last-resort drugs for treating multidrug-resistant bacterial infections, but their utilisation is still limited due to their low stability and often strong toxicity. Here, we evaluated the structure and the bioactivity of an AMP, GV30, derived from the frog skin secretions of Hylarana guentheri, and designed seven truncated derivatives based on the presence of cleavage sites for trypsin using an online proteomic bioinformatic resource PeptideCutter tool. We investigated the anti-MRSA effect, toxicity and salt- and serum-resistance of these peptides. Interestingly, the structure–activity relationship revealed that removing “Rana box” loop could significantly improve the bactericidal speed on MRSA. Among these derivatives, GV21 (GVIFNALKGVAKTVAAQLLKK-NH2), because of its faster antibacterial effect, lower toxicity, and retains the good antibacterial activity and stability of the parent peptide, is considered to become a new potential antibacterial candidate against MRSA.
Collapse
Affiliation(s)
- Yingxue Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Aifang Yao
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
19
|
Modification Strategy of D-leucine Residue Addition on a Novel Peptide from Odorrana schmackeri, with Enhanced Bioactivity and In Vivo Efficacy. Toxins (Basel) 2021; 13:toxins13090611. [PMID: 34564615 PMCID: PMC8473181 DOI: 10.3390/toxins13090611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Brevinins are a well-characterised, frog-skin-derived, antimicrobial peptide (AMP) family, but their applications are limited by high cytotoxicity. In this study, a wild-type des-Leu2 brevinin peptide, named brevinin-1OS (B1OS), was identified from Odorrana schmackeri. To explore the significant role of the leucine residue at the second position, two variants, B1OS-L and B1OS-D-L, were designed by adding L-leucine and D-leucine residues at this site, respectively. The antibacterial and anticancer activities of B1OS-L and B1OS-D-L were around ten times stronger than the parent peptide. The activity of B1OS against the growth of Gram-positive bacteria was markedly enhanced after modification. Moreover, the leucine-modified products exerted in vivo therapeutic potential in an methicillin-resistant Staphylococcus aureus (MRSA)-infected waxworm model. Notably, the single substitution of D-leucine significantly increased the killing speed on lung cancer cells, where no viable H838 cells survived after 2 h of treatment with B1OS-D-L at 10 μM with low cytotoxicity on normal cells. Overall, our study suggested that the conserved leucine residue at the second position from the N-terminus is vital for optimising the dual antibacterial and anticancer activities of B1OS and proposed B1OS-D-L as an appealing therapeutic candidate for development.
Collapse
|
20
|
HMP-S7 Is a Novel Anti-Leukemic Peptide Discovered from Human Milk. Biomedicines 2021; 9:biomedicines9080981. [PMID: 34440185 PMCID: PMC8394283 DOI: 10.3390/biomedicines9080981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 01/17/2023] Open
Abstract
Chemotherapy in childhood leukemia is associated with late morbidity in leukemic survivors, while certain patient subsets are relatively resistant to standard chemotherapy. It is therefore important to identify new agents with sensitivity and selectivity towards leukemic cells, while having less systemic toxicity. Peptide-based therapeutics has gained a great deal of attention during the last few years. Here, we used an integrative workflow combining mass spectrometric peptide library construction, in silico anticancer peptide screening, and in vitro leukemic cell studies to discover a novel anti-leukemic peptide having 3+ charges and an alpha helical structure, namely HMP-S7, from human breast milk. HMP-S7 showed cytotoxic activity against four distinct leukemic cell lines in a dose-dependent manner but had no effect on solid malignancies or representative normal cells. HMP-S7 induced leukemic cell death by penetrating the plasma membrane to enter the cytoplasm and cause the leakage of lactate dehydrogenase, thus acting in a membranolytic manner. Importantly, HMP-S7 exhibited anti-leukemic effects against patient-derived leukemic cells ex vivo. In conclusion, HMP-S7 is a selective anti-leukemic peptide with promise, which requires further validation in preclinical and clinical studies.
Collapse
|
21
|
Bakare OO, Gokul A, Wu R, Niekerk LA, Klein A, Keyster M. Biomedical Relevance of Novel Anticancer Peptides in the Sensitive Treatment of Cancer. Biomolecules 2021; 11:1120. [PMID: 34439786 PMCID: PMC8394746 DOI: 10.3390/biom11081120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/14/2022] Open
Abstract
The global increase in cancer mortality and economic losses necessitates the cautious quest for therapeutic agents with compensatory advantages over conventional therapies. Anticancer peptides (ACPs) are a subset of host defense peptides, also known as antimicrobial peptides, which have emerged as therapeutic and diagnostic candidates due to several compensatory advantages over the non-specificity of the current treatment regimens. This review aimed to highlight the ravaging incidence of cancer, the use of ACPs in cancer treatment with their mechanisms, ACP discovery and delivery methods, and the limitations for their use. This would create awareness for identifying more ACPs with better specificity, accuracy and sensitivity towards the disease. It would also promote their efficacious utilization in biotechnology, medical sciences and molecular biology to ease the severity of the disease and enable the patients living with these conditions to develop an accommodating lifestyle.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.)
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthaditjhaba 9866, South Africa;
| | - Ruomou Wu
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.)
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.)
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.)
| |
Collapse
|
22
|
Lowy DB, Makker PGS, Moalem-Taylor G. Cutaneous Neuroimmune Interactions in Peripheral Neuropathic Pain States. Front Immunol 2021; 12:660203. [PMID: 33912189 PMCID: PMC8071857 DOI: 10.3389/fimmu.2021.660203] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Bidirectional interplay between the peripheral immune and nervous systems plays a crucial role in maintaining homeostasis and responding to noxious stimuli. This crosstalk is facilitated by a variety of cytokines, inflammatory mediators and neuropeptides. Dysregulation of this delicate physiological balance is implicated in the pathological mechanisms of various skin disorders and peripheral neuropathies. The skin is a highly complex biological structure within which peripheral sensory nerve terminals and immune cells colocalise. Herein, we provide an overview of the sensory innervation of the skin and immune cells resident to the skin. We discuss modulation of cutaneous immune response by sensory neurons and their mediators (e.g., nociceptor-derived neuropeptides), and sensory neuron regulation by cutaneous immune cells (e.g., nociceptor sensitization by immune-derived mediators). In particular, we discuss recent findings concerning neuroimmune communication in skin infections, psoriasis, allergic contact dermatitis and atopic dermatitis. We then summarize evidence of neuroimmune mechanisms in the skin in the context of peripheral neuropathic pain states, including chemotherapy-induced peripheral neuropathy, diabetic polyneuropathy, post-herpetic neuralgia, HIV-induced neuropathy, as well as entrapment and traumatic neuropathies. Finally, we highlight the future promise of emerging therapies associated with skin neuroimmune crosstalk in neuropathic pain.
Collapse
Affiliation(s)
- Daniel B Lowy
- School of Medical Sciences, The University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| | - Preet G S Makker
- School of Medical Sciences, The University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, The University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Antimicrobial Peptide Brevinin-1RL1 from Frog Skin Secretion Induces Apoptosis and Necrosis of Tumor Cells. Molecules 2021; 26:molecules26072059. [PMID: 33916789 PMCID: PMC8038347 DOI: 10.3390/molecules26072059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer has always been one of the most common malignant diseases in the world. Therefore, there is an urgent need to find potent agents with selective antitumor activity against cancer cells. It has been reported that antimicrobial peptides (AMPs) can selectively target tumor cells. In this study, we focused on the anti-tumor activity and mechanism of Brevivin-1RL1, a cationic α-helical AMP isolated from frog Rana limnocharis skin secretions. We found that Brevivin-1RL1 preferentially inhibits tumor cells rather than non-tumor cells with slight hemolytic activity. Cell viability assay demonstrated the intermolecular disulfide bridge contributes to the inhibitory activity of the peptide as the antitumor activity was abolished when the disulfide bridge reduced. Further mechanism studies revealed that both necrosis and apoptosis are involved in Brevivin-1RL1 mediated tumor cells death. Moreover, Brevivin-1RL1 induced extrinsic and mitochondria intrinsic apoptosis is caspases dependent, as the pan-caspase inhibitor z-VAD-FMK rescued Brevinin-1RL1 induced tumor cell proliferative inhibition. Immunohistology staining showed Brevivin-1RL1 mainly aggregated on the surface of the tumor cells. These results together suggested that Brevivin-1RL1 preferentially converges on the cancer cells to trigger necrosis and caspase-dependent apoptosis and Brevivin-1RL1 could be considered as a pharmacological candidate for further development as anti-cancer agent.
Collapse
|
24
|
Soopramanien M, Khan NA, Abdalla SAO, Sagathevan K, Siddiqui R. Scorpion and Frog Organ Lysates are Potential Source of Antitumour Activity. Asian Pac J Cancer Prev 2020; 21:3011-3018. [PMID: 33112561 PMCID: PMC7798147 DOI: 10.31557/apjcp.2020.21.10.3011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/04/2020] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES It is noteworthy that several animal species are known to withstand high levels of radiation, and are exposed to heavy metals but rarely been reported to develop cancer. For example, the scorpion has been used as folk medicine in ancient civilizations of Iran and China, while amphibian skin is known to possess medicinal properties. Here, we elucidated the anti-tumour activity of the scorpion (Uropygi) and frog (Lithobates catesbeianus). MATERIALS AND METHODS Animals were procured and their organ lysates and sera were prepared and tested against Michigan Cancer Foundation-7 breast cancer (MCF-7), prostate cancer (PC3), Henrietta Lacks cervical cancer (HeLa), and normal human keratinocyte cells. Exoskeleton, appendages and hepatopancreas were dissected from the scorpion, whereas liver, lungs, heart, oviduct, gastrointestinal tract, gall bladder, kidneys, eggs and sera were collected from frog and organ lysates/sera were prepared. Growth inhibition assays and cytotoxicity assays were performed. RESULTS Appendages, exoskeleton lysates, and hepatopancreas from scorpion exhibited potent growth inhibition, and cytotoxic effects. Furthermore, lungs, liver, gastrointestinal tract, heart, oviduct, kidneys, eggs, and sera from frog displayed growth inhibition and cytotoxic effects. CONCLUSION Organ lysates, sera of scorpion, and amphibians possess anti-tumour activities. This is a worthy area of research as the molecular identity of the active molecule(s) together with their mechanism of action will lead to the rational development of novel anticancer agent(s).
Collapse
Affiliation(s)
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates.
| | | | - K Sagathevan
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates.
| |
Collapse
|
25
|
The Spectrum of Design Solutions for Improving the Activity-Selectivity Product of Peptide Antibiotics against Multidrug-Resistant Bacteria and Prostate Cancer PC-3 Cells. Molecules 2020; 25:molecules25153526. [PMID: 32752241 PMCID: PMC7436000 DOI: 10.3390/molecules25153526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
The link between the antimicrobial and anticancer activity of peptides has long been studied, and the number of peptides identified with both activities has recently increased considerably. In this work, we hypothesized that designed peptides with a wide spectrum of selective antimicrobial activity will also have anticancer activity, and tested this hypothesis with newly designed peptides. The spectrum of peptides, used as partial or full design templates, ranged from cell-penetrating peptides and putative bacteriocin to those from the simplest animals (placozoans) and the Chordata phylum (anurans). We applied custom computational tools to predict amino acid substitutions, conferring the increased product of bacteriostatic activity and selectivity. Experiments confirmed that better overall performance was achieved with respect to that of initial templates. Nine of our synthesized helical peptides had excellent bactericidal activity against both standard and multidrug-resistant bacteria. These peptides were then compared to a known anticancer peptide polybia-MP1, for their ability to kill prostate cancer cells and dermal primary fibroblasts. The therapeutic index was higher for seven of our peptides, and anticancer activity stronger for all of them. In conclusion, the peptides that we designed for selective antimicrobial activity also have promising potential for anticancer applications.
Collapse
|
26
|
Tzitzilis A, Boura‐Theodorou A, Michail V, Papadopoulos S, Krikorian D, Lekka ME, Koukkou A, Sakarellos‐Daitsiotis M, Panou‐Pomonis E. Cationic amphipathic peptide analogs of cathelicidin LL‐37 as a probe in the development of antimicrobial/anticancer agents. J Pept Sci 2020; 26:e3254. [DOI: 10.1002/psc.3254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
|
27
|
Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules 2020; 25:E2850. [PMID: 32575664 PMCID: PMC7356147 DOI: 10.3390/molecules25122850] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs), or host defense peptides, are small cationic or amphipathic molecules produced by prokaryotic and eukaryotic organisms that play a key role in the innate immune defense against viruses, bacteria and fungi. AMPs have either antimicrobial or anticancer activities. Indeed, cationic AMPs are able to disrupt microbial cell membranes by interacting with negatively charged phospholipids. Moreover, several peptides are capable to trigger cytotoxicity of human cancer cells by binding to negatively charged phosphatidylserine moieties which are selectively exposed on the outer surface of cancer cell plasma membranes. In addition, some AMPs, such as LTX-315, have shown to induce release of tumor antigens and potent damage associated molecular patterns by causing alterations in the intracellular organelles of cancer cells. Given the recognized medical need of novel anticancer drugs, AMPs could represent a potential source of effective therapeutic agents, either alone or in combination with other small molecules, in oncology. In this review we summarize and describe the properties and the mode of action of AMPs as well as the strategies to increase their selectivity toward specific cancer cells.
Collapse
Affiliation(s)
- Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| | - Antonella Borrelli
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy;
| | - Luigi Buonaguro
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy;
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| |
Collapse
|
28
|
Kunda NK. Antimicrobial peptides as novel therapeutics for non-small cell lung cancer. Drug Discov Today 2020; 25:238-247. [DOI: 10.1016/j.drudis.2019.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/07/2019] [Accepted: 11/24/2019] [Indexed: 01/02/2023]
|
29
|
A Novel Dermaseptin Isolated from the Skin Secretion of Phyllomedusa tarsius and Its Cationicity-Enhanced Analogue Exhibiting Effective Antimicrobial and Anti-Proliferative Activities. Biomolecules 2019; 9:biom9100628. [PMID: 31635388 PMCID: PMC6843903 DOI: 10.3390/biom9100628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
A novel dermaseptin peptide, dermaseptin-PT9 (DPT9), was isolated and identified from Phyllomedusa tarsius by the combination of molecular cloning and LC-MS analysis. Chemically synthesised DPT9 was broadly effective against the tested microorganisms through the disruption of cell membranes and showed weak haemolytic activity towards horse erythrocytes. It also exhibited anti-proliferative effect against various human cancer cells. Moreover, an analogue with enhanced cationicity, K8, 23-DPT9, in which Asp8 and Glu23 were substituted by lysine residues, had a markedly increased antimicrobial effect against all tested microorganisms and disrupted microbial cell membranes. This analogue also showed no haemolysis at its effective antimicrobial concentrations. In addition, K8, 23-DPT9 displayed an enhanced anti-proliferative effect against cancer cells, while displayed weak activity against the normal human cell line, HMEC-1.
Collapse
|
30
|
A Novel Peptide from Abalone ( Haliotis discus hannai) to Suppress Metastasis and Vasculogenic Mimicry of Tumor Cells and Enhance Anti-Tumor Effect In Vitro. Mar Drugs 2019; 17:md17040244. [PMID: 31022939 PMCID: PMC6520751 DOI: 10.3390/md17040244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/06/2019] [Accepted: 04/19/2019] [Indexed: 12/17/2022] Open
Abstract
Vasculogenic mimicry (VM) formed by tumor cells plays a vital role in the progress of tumor, because it provides nutrition for tumor cells and takes away the metabolites. Therefore, the inhibition of VM is crucial to the clinical treatment of tumors. In this study, we investigated the anti-tumor effect of a novel peptide, KVEPQDPSEW (AATP), isolated from abalone (Haliotis discus hannai) on HT1080 cells by migration, invasion analysis and the mode of action. The results showed that AATP effectively inhibited MMPs by blocking MAPKs and NF-κB pathways, leading to the downregulation of metastasis of tumor cells. Moreover, AATP significantly inhibited VM and pro-angiogenic factors, including VEGF and MMPs by suppression of AKT/mTOR signaling. In addition, molecular docking was used to study the interaction of AATP and HIF-1α, and the results showed that AATP was combined with an active site of HIF-1α by a hydrogen bond. The effect of AATP on anti-metastatic and anti-vascular in HT1080 cells revealed that AATP may be a potential lead compound for treatment of tumors in the future.
Collapse
|