1
|
Keller LE, Fortier LA, Lattermann C, Hunt ER, Zhang S, Fu Q, Jacobs CA. Complement system dysregulation in synovial fluid from patients with persistent inflammation following anterior cruciate ligament reconstruction surgery. THE JOURNAL OF CARTILAGE & JOINT PRESERVATION 2023; 3:100114. [PMID: 38343688 PMCID: PMC10853944 DOI: 10.1016/j.jcjp.2023.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Introduction Patients with anterior cruciate ligament injury are at high risk of posttraumatic osteoarthritis and their response to reconstructive surgery and rehabilitation vary. Proteins identified in the orchestration of the acute inflammatory response may be predictive of patient outcomes. Objective An unbiased, bottom-up proteomics approach was used to discover novel targets for therapeutics in relation to dysregulation in the orchestration of inflammatory pathways implicated in persistent joint inflammation subsequent to joint trauma. Methods Synovial fluid was aspirated from patients at 1 week and 4 weeks after anterior cruciate ligament reconstruction (ACLR) and interleukin 6 (IL-6) concentrations were quantified by enzyme-linked immunosorbent assay. Patients were segregated into IL-6low and IL-6high groups based on IL-6 concentrations in synovial fluid at 4-weeks postoperation and proteins in synovial fluid were analyzed using qualitative, bottom-up proteomics. Abundance ratios were calculated for IL-6high and IL-6low groups as 4 weeks postoperation:1 week postoperation. Results A total of 291 proteins were detected in synovial fluid, 34 of which were significantly (P < .05) differentially regulated between groups. Proteins associated with the classical and alternative complement cascade pathways were increased in the IL-6high compared to IL-6low group. Insulin-like growth factor-binding protein 6 (IGFBP-6) was increased by nearly 60-fold in the IL-6low group. Conclusions Patients segregated by IL-6 concentration in synovial fluid at 4 weeks post-ACLR demonstrated differential regulation of multiple pathways, providing opportunities to investigate novel targets, such as IGFBP-6, and to take advantage of therapeutics already approved for clinical use in other diseases that target inflammatory pathways, including the complement system.
Collapse
Affiliation(s)
- Laura E. Keller
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lisa A. Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Christian Lattermann
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Emily R. Hunt
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sheng Zhang
- Biological Resource Center, Cornell University, Ithaca, NY, USA
| | - Qin Fu
- Biological Resource Center, Cornell University, Ithaca, NY, USA
| | - Cale A. Jacobs
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Benzeid R, Gihbid A, Benchekroun N, Tawfiq N, Benider A, Attaleb M, Filali Maltouf A, El Mzibri M, Khyatti M, Chaoui I. Recent Advances in Nasopharyngeal Cancer Management: From Diagnosis
to Theranostics. CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2023; 20:13-26. [DOI: 10.2174/1875692120666230213111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 01/03/2025]
Abstract
Abstract:
Nasopharyngeal cancer (NPC) is one of the most common head and neck cancers.
NPC differs significantly from other cancers in its etiology, epidemiology, clinical behavior,
and treatment. Being highly radiosensitive, the standard treatment for NPC is radiotherapy.
However, radioresistance hampers the success of treatment and may cause local recurrence
and distant metastases in NPC patients. In this review, we discuss the updated protocols
for NPC diagnosis and treatment based on recent literature with an emphasis on the
mechanisms of radioresistance at the molecular level with a special focus on genetic and epigenetic
events, affecting genes involved in xenobiotic detoxification and DNA repair. We
also highlight the importance of some cellular and Epstein Barr viral miRNAs targeting
specific DNA repair factors and consequently promoting NPC radioresistance. These molecular
markers may serve as promising tools for diagnosis, prognosis, and radioresistance
prediction to guide theranostics of patients with NPC in the future.
Collapse
Affiliation(s)
- Rajaa Benzeid
- Department of Life Sciences, National Centre for Nuclear Energy, Science and Technology, Rabat, Morocco
- Department of Molecular Biology, Mohammed V University, Rabat, Morocco
| | - Amina Gihbid
- Department of Virology,
Institut Pasteur du MAroc, Casablanca, Morocco
| | - Nadia Benchekroun
- Department of Radiotherapy, Mohammed VI Center for
Treatment of Cancer, Ibn Rochd Hospital Center, Casablanca, Morocco
| | - Nezha Tawfiq
- Department of Radiotherapy, Mohammed VI Center for
Treatment of Cancer, Ibn Rochd Hospital Center, Casablanca, Morocco
| | - Abdellatif Benider
- Department of Radiotherapy, Mohammed VI Center for
Treatment of Cancer, Ibn Rochd Hospital Center, Casablanca, Morocco
| | - Mohammed Attaleb
- Department of Life Sciences, National Centre for Nuclear Energy, Science and Technology, Rabat, Morocco
| | | | - Mohammed El Mzibri
- Department of Life Sciences, National Centre for Nuclear Energy, Science and Technology, Rabat, Morocco
| | - Meriem Khyatti
- Department of Virology,
Institut Pasteur du MAroc, Casablanca, Morocco
| | - Imane Chaoui
- Department of Life Sciences, National Centre for Nuclear Energy, Science and Technology, Rabat, Morocco
| |
Collapse
|
3
|
Zhang SQ, Pan SM, Lai SZ, Situ HJ, Liu J, Dai WJ, Liang SX, Zhou LQ, Lu QQ, Ke PF, Zhang F, Chen HB, Li JC. Novel Plasma Proteomic Biomarkers for Early Identification of Induction Chemotherapy Beneficiaries in Locoregionally Advanced Nasopharyngeal Carcinoma. Front Oncol 2022; 12:889516. [PMID: 35847896 PMCID: PMC9279567 DOI: 10.3389/fonc.2022.889516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Background Induction chemotherapy (IC) can alleviate locoregionally advanced nasopharyngeal carcinoma (LA-NPC), but effectiveness differs between patients, toxicity is problematic, and effective blood-based IC efficacy predictors are lacking. Here, we aimed to identify biomarkers for early identification of IC beneficiaries. Methods Sixty-four pairs of matched plasma samples collected before and after IC from LA-NPC patients including 34 responders and 30 non-responders, as well as 50 plasma samples of healthy individuals, were tested using data-independent acquisition mass spectrometry. The proteins associated with clinical traits or IC benefits were investigated by weighted gene co-expression network analysis (WGCNA) and soft cluster analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional annotations were performed to determine the potential function of the identified proteins. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of candidate biomarkers in predicting IC beneficiaries. Results Compared with healthy individuals, 1027 differentially expressed proteins (DEPs) were found in the plasma of LA-NPC patients. Based on feedback from IC outcomes, 463 DEPs were identified in the pre-IC plasma between responders and non-responders. A total of 1212 DEPs represented the proteomic changes before and after IC in responders, while 276 DEPs were identified in post-IC plasma between responders and non-responders. WGCNA identified nine protein co-expression modules correlated with clinical traits. Soft cluster analysis identified four IC benefits-related protein clusters. Functional enrichment analysis showed that these proteins may play a role in IC via immunity, complement, coagulation, glycosaminoglycan and serine. Four proteins differentially expressed in all group comparisons, paraoxonase/arylesterase 1 (PON1), insulin-like growth factor-binding protein 3 (IGFBP-3), rheumatoid factor D5 light chain (v-kappa-3) and RNA helicase (DDX55), were associated with clinical traits or IC benefits. A four-protein model accurately identified potential IC beneficiaries (AUC=0.95) while diagnosing LA-NPC (AUC=0.92), and the prediction performance was verified using the models to confirm the effective IC (AUC=0.97) and evaluate IC outcome (AUC=0.94). Conclusion The plasma protein profiles among IC responders and non-responders were different. PON1, IGFBP3, v-kappa-3 and DDX55 could serve as potential biomarkers for early identification of IC beneficiaries for individualised treatment of LA-NPC.
Collapse
Affiliation(s)
- Shan-Qiang Zhang
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Su-Ming Pan
- Department of Radiation Oncology, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Shu-Zhen Lai
- Department of Radiation Oncology, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Hui-Jing Situ
- Department of Radiation Oncology, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Jun Liu
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Wen-Jie Dai
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Si-Xian Liang
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Li-Qing Zhou
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Qi-Qi Lu
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Pei-Feng Ke
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Fan Zhang
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Hai-Bin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Ji-Cheng Li
- Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Luo H, Ge H. Application of Proteomics in the Discovery of Radiosensitive Cancer Biomarkers. Front Oncol 2022; 12:852791. [PMID: 35280744 PMCID: PMC8904368 DOI: 10.3389/fonc.2022.852791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Radiation therapy remains an important component of cancer treatment. Gene-encoded proteins were the actual executors of cellular functions. Proteomic was a novel technology that can systematically analysis protein composition and measure their levels of change, this was a high throughput method, and were the import tools in the post genomic era. In recent years, rapid progress of proteomic have been made in the study of cancer mechanism, diagnosis, and treatment. This article elaborates current advances and future directions of proteomics in the discovery of radiosensitive cancer biomarkers.
Collapse
Affiliation(s)
- Hui Luo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Larionova I, Rakina M, Ivanyuk E, Trushchuk Y, Chernyshova A, Denisov E. Radiotherapy resistance: identifying universal biomarkers for various human cancers. J Cancer Res Clin Oncol 2022; 148:1015-1031. [PMID: 35113235 DOI: 10.1007/s00432-022-03923-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Radiotherapy (RT) is considered as a standard in the treatment of most solid cancers, including glioblastoma, lung, breast, rectal, prostate, colorectal, cervical, esophageal, and head and neck cancers. The main challenge in RT is tumor cell radioresistance associated with a high risk of locoregional relapse and distant metastasis. Despite significant progress in understanding mechanisms of radioresistance, its prediction and overcoming remain unresolved. This review presents the state-of-the-art for the potential universal biomarkers correlated to the radioresistance and poor outcome in different cancers. We describe radioresistance biomarkers functionally attributed to DNA repair, signal transduction, hypoxia, and angiogenesis. We also focus on high throughput genetic and proteomic studies, which revealed a set of molecular biomarkers related to radioresistance. In conclusion, we discuss biomarkers which are overlapped in most several cancers.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia.
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Tomsk, Russia
| | - Elena Ivanyuk
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Yulia Trushchuk
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Alena Chernyshova
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| |
Collapse
|
6
|
Current Status and Future Perspectives about Molecular Biomarkers of Nasopharyngeal Carcinoma. Cancers (Basel) 2021; 13:cancers13143490. [PMID: 34298701 PMCID: PMC8305767 DOI: 10.3390/cancers13143490] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is a serious major public health problem in its endemic countries. Up to 80% of NPC patients with locally advanced disease or distant metastasis at diagnosis were associated with poor prognosis and with median survival less than 4 months. The mortality rate of NPC metastasis is up to 91%. To date, there is no available curative treatment or reliable early diagnosis or prognosis for NPC. Discovery and development of reliable early diagnosis and prognosis biomarkers for nasopharyngeal carcinoma are urgent needed. Hence, we have here listed the potential early diagnosis and prognosis biomarker candidates for nasopharyngeal carcinoma. This review will give an insight to readers on the progress of NPC biomarker discovery to date, as well as future prospective biomarker development and their translation to clinical use. Abstract Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that shows a remarkable ethnic and geographical distribution. It is one of the major public health problems in some countries, especially Southern China and Southeast Asia, but rare in most Western countries. Multifactorial interactions such as Epstein–Barr virus infection, individual’s genetic susceptibility, as well as environmental and dietary factors may facilitate the pathogenesis of this malignancy. Late presentation and the complex nature of the disease have led it to become a major cause of mortality. Therefore, an effective, sensitive, and specific molecular biomarker is urgently needed for early disease diagnosis, prognosis, and prediction of metastasis and recurrence after treatment. In this review, we discuss the recent research status of potential biomarker discovery and the problems that need to be explored further for better NPC management. By studying the aberrant pattern of these candidate biomarkers that promote NPC development and progression, we are able to understand the complexity of this malignancy better, hence positing our stands better towards strategies that may provide a way forward to the discovery of more reliable and specific biomarkers for diagnosis and targeted therapeutic development.
Collapse
|
7
|
Zhang Y, Zhang W. FOXD1, negatively regulated by miR-186, promotes the proliferation, metastasis and radioresistance of nasopharyngeal carcinoma cells. Cancer Biomark 2021; 28:511-521. [PMID: 32568181 DOI: 10.3233/cbm-191311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Foxhead box D1 (FOXD1) is validated to be over-expressed in a variety of human malignancies and promotes cancer progression. Nevertheless, the role of FOXD1 and the associated mechanism in nasopharyngeal carcinoma (NPC) remain largely unknown. METHODS A total of seventy-five cases of NPC tissue samples were collected. FOXD1 expression in NPC tissues and cells (SUNE1, CNE1, CNE2, and HONE1) was detected using immunohistochemistry and Western blot, respectively. The relationship between FOXD1 expression and clinicopathological parameters of NPC patients was analyzed. FOXD1 mRNA and miR-186 expression in NPC tissues and cells was detected using quantitative polymerase chain reaction (qPCR). The cell viability of NPC cells was detected using CCK-8 assay. Colony survival of NPC cells exposed to different doses of radiation was detected using colony formation assay. Transwell assay was used to evaluate the migration and invasion of NPC cells. The dual-luciferase reporter gene assay was employed to verify the targeting relationship between miR-186 and FOXD1. RESULTS FOXD1 was over-expressed in NPC tissues (average fold change on mRNA level = 4.72), and its high expression was correlated to NPC positive lymph node metastasis and tissue differentiation. The over-expression of FOXD1 promoted the proliferation, migration, invasion and radio-resistance of NPC cells. On the contrary, the knock-down of FOXD1 inhibited the malignant phenotypes of the above cells. It was verified that FOXD1 was one of the downstream targets of miR-186 and was negatively regulated by it. CONCLUSION FOXD1, which is negatively regulated by miR-186, acts as a novel oncogene in NPC and serves as potential biomarker and therapeutic target for NPC. The research will provide great theoretical basis for further clinical diagnosis and therapy.
Collapse
|
8
|
Zhang SQ, Pan SM, Liang SX, Han YS, Chen HB, Li JC. Research status and prospects of biomarkers for nasopharyngeal carcinoma in the era of high‑throughput omics (Review). Int J Oncol 2021; 58:9. [PMID: 33649830 PMCID: PMC7910009 DOI: 10.3892/ijo.2021.5188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
As a malignant tumor type, nasopharyngeal carcinoma (NPC) is characterized by distinct geographical, ethnic and genetic differences; presenting a major threat to human health in many countries, especially in Southern China. At present, no accurate and effective methods are available for the early diagnosis, efficacious evaluation or prognosis prediction for NPC. As such, a large number of patients have locoregionally advanced NPC at the time of initial diagnosis. Many patients show toxic reactions to overtreatment and have risks of cancer recurrence and distant metastasis owing to insufficient treatment. To solve these clinical problems, high‑throughput '‑omics' technologies are being used to screen and identify specific molecular biomarkers for NPC. Because of the lack of comprehensive descriptions regarding NPC biomarkers, the present study summarized the research progress that has been made in recent years to discover NPC biomarkers, highlighting the existing problems that require exploration. In view of the lack of authoritative reports at present, study design factors that affect the screening of biomarkers are also discussed here and prospects for future research are proposed to provide references for follow‑up studies of NPC biomarkers.
Collapse
Affiliation(s)
- Shan-Qiang Zhang
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Wujiang, Shaoguan, Guangdong 512025, P.R. China
| | - Su-Ming Pan
- Department of Radiotherapy, Yue Bei People's Hospital, Shantou University Medical College, Wujiang, Shaoguan, Guangdong 512025, P.R. China
| | - Si-Xian Liang
- Department of Radiotherapy, Yue Bei People's Hospital, Shantou University Medical College, Wujiang, Shaoguan, Guangdong 512025, P.R. China
| | - Yu-Shuai Han
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Hai-Bin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ji-Cheng Li
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Wujiang, Shaoguan, Guangdong 512025, P.R. China
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
- Correspondence to: Professor Ji-Cheng Li, Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, 133 Huimin South Road, Wujiang, Shaoguan, Guangdong 512025, P.R. China, E-mail:
| |
Collapse
|
9
|
Liu X, Hu Z, Qu J, Li J, Gong K, Wang L, Jiang J, Li X, He R, Duan L, Luo W, Xia C, Luo D. AKR1B10 confers resistance to radiotherapy via FFA/TLR4/NF-κB axis in nasopharyngeal carcinoma. Int J Biol Sci 2021; 17:756-767. [PMID: 33767586 PMCID: PMC7975703 DOI: 10.7150/ijbs.52927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one kind of human head and neck cancers with high incidence in Southern China, Southeast Asia and North Africa. In spite of great innovations in radiation and chemotherapy treatments, the 5-year survival rate is not satisfactory. One of the main reasons is resistance to radiotherapy which leads to therapy failure and recurrence of NPC. The mechanism underlying remains to be fully elucidated. Aldo-keto reductase B10 (AKR1B10) plays a role in the formation and development of carcinomas. However, its role in resistance to radiotherapy of NPC is not clear. In this research, the relationships between AKR1B10 expression and the treatment effect of NPC patients, NPC cell survival, cell apoptosis, and DNA damage repair, as well as the effect and mechanism of AKR1B10 expression on NPC radioresistance were explored. A total of 58 paraffin tissues of NPC patients received radiotherapy were collected including 30 patients with radiosensitivity and 28 patients with radioresistance. The relationships between AKR1B10 expression and the treatment effect as well as clinical characteristics were analyzed by immuno-histochemical experiments, and the roles of AKR1B10 in cell survival, apoptosis and DNA damage repair were detected using the AKR1B10 overexpressed cell models. Furthermore the mechanism of AKR1B10 in NPC radioresistance was explored. Finally, the radioresistance effect of AKR1B10 expression was evaluated by the tumor xenograft model of nude mice and the method of radiotherapy. The results showed AKR1B10 expression level was correlated with radiotherapy resistance, and AKR1B10 overexpression promoted proliferation of NPC cells, reduced apoptosis and decreased cellular DNA damage after radiotherapy. The probable molecular mechanism is that AKR1B10 expression activated FFA/TLR4/NF-κB axis in NPC cells. This was validated by using the TLR4 inhibitor TAK242 to treat NPC cells with AKR1B10 expression, which reduced the phosphorylation of NF-κB. This study suggests that AKR1B10 can induce radiotherapy resistance and promote cell survival via FFA/TLR4/NF-κB axis in NPC, which may provide a novel target to fight against radiotherapy resistance of NPC.
Collapse
Affiliation(s)
- Xiangting Liu
- Translational Medicine Institute, the First People's Hospital of Chenzhou, University of South China, Hunan 432000, P.R China
| | - Zheng Hu
- Translational Medicine Institute, the First People's Hospital of Chenzhou, University of South China, Hunan 432000, P.R China.,The First School of Clinical Medicine, Southern Medical University, Guangdong Guangzhou 51000, China
| | - Jiayao Qu
- Translational Medicine Institute, the First People's Hospital of Chenzhou, University of South China, Hunan 432000, P.R China.,The First School of Clinical Medicine, Southern Medical University, Guangdong Guangzhou 51000, China
| | - Jia Li
- Translational Medicine Institute, the First People's Hospital of Chenzhou, University of South China, Hunan 432000, P.R China
| | - Ke Gong
- Translational Medicine Institute, the First People's Hospital of Chenzhou, University of South China, Hunan 432000, P.R China
| | - Li Wang
- Translational Medicine Institute, the First People's Hospital of Chenzhou, University of South China, Hunan 432000, P.R China.,The First School of Clinical Medicine, Southern Medical University, Guangdong Guangzhou 51000, China
| | - Jing Jiang
- Translational Medicine Institute, the First People's Hospital of Chenzhou, University of South China, Hunan 432000, P.R China
| | - Xiangning Li
- Translational Medicine Institute, the First People's Hospital of Chenzhou, University of South China, Hunan 432000, P.R China
| | - Rongzhang He
- Translational Medicine Institute, the First People's Hospital of Chenzhou, University of South China, Hunan 432000, P.R China
| | - Lili Duan
- Translational Medicine Institute, the First People's Hospital of Chenzhou, University of South China, Hunan 432000, P.R China
| | - Weihao Luo
- Translational Medicine Institute, the First People's Hospital of Chenzhou, University of South China, Hunan 432000, P.R China
| | - Chenglai Xia
- South Medical University Affiliated Maternal & child Health Hospital of Foshan, Foshan 528000, P.R. China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 520150, P.R. China
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Guangdong 518000, P.R China.,Center for Laboratory and Pathology, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, the First People's Hospital of Chenzhou, Southern Medical University, Hunan 423000, P.R China
| |
Collapse
|
10
|
Pan Z, Luo Y, Xia Y, Zhang X, Qin Y, Liu W, Li M, Liu X, Zheng Q, Li D. Cinobufagin induces cell cycle arrest at the S phase and promotes apoptosis in nasopharyngeal carcinoma cells. Biomed Pharmacother 2019; 122:109763. [PMID: 31918288 DOI: 10.1016/j.biopha.2019.109763] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023] Open
Abstract
Emerging evidence suggests that cinobufagin, an active ingredient in Venenum Bufonis, inhibits cell proliferation in several tumor cells. However, the anti-tumor effect of cinobufagin on nasopharyngeal carcinoma and the underlying molecular mechanisms are still unclear. In this study, we found that cinobufagin significantly inhibits the proliferation of nasopharyngeal carcinoma HK-1 cells. Further analyses demonstrated that cinobufagin induces cell cycle arrest at the S phase in HK-1 cells through downregulating the levels of CDK2 and cyclin E. Moreover, cinobufagin significantly downregulates the protein level of Bcl-2 and upregulates the levels of Bax, subsequently increasing the levels of cytoplasmic cytochrome c, Apaf-1, cleaved PARP1, cleaved caspase-3, and cleaved caspase-9, leading to HK-1 apoptosis. Furthermore, we found that cinobufagin significantly increases ROS levels and decreases the mitochondrial membrane potential in HK-1 cells. Collectively, these data imply that cinobufagin induces cell cycle arrest at the S phase and induces apoptosis through increasing ROS levels, thereby inhibiting cell proliferation in HK-1 cells. Therefore, cinobufagin is a promising bioactive agent that may contribute to the development of treatment strategies of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Zhaohai Pan
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Yongchuan Luo
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; Intravenous Drug Distribution Center, Department of Pharmacy, Yantai Affiliated Hosptial of Binzhou Medical University, 264100, Yantai, China
| | - Yuan Xia
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Xin Zhang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Yao Qin
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Wenjing Liu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Xiaona Liu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China.
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China.
| |
Collapse
|