1
|
Siddique R, Gupta G, Mgm J, Kumar A, Kaur H, Ariffin IA, Pramanik A, Almalki WH, Ali H, Shahwan M, Patel N, Murari K, Mishra R, Thapa R, Bhat AA. Targeting notch-related lncRNAs in cancer: Insights into molecular regulation and therapeutic potential. Pathol Res Pract 2024; 257:155282. [PMID: 38608371 DOI: 10.1016/j.prp.2024.155282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
Cancer is a group of diseases marked by unchecked cell proliferation and the ability for the disease to metastasize to different body areas. Enhancements in treatment and early detection are crucial for improved outcomes. LncRNAs are RNA molecules that encode proteins and have a length of more than 200 nucleotides. LncRNAs are crucial for chromatin architecture, gene regulation, and other cellular activities that impact both normal growth & pathological processes, even though they are unable to code for proteins. LncRNAs have emerged as significant regulators in the study of cancer biology, with a focus on their intricate function in the Notch signaling pathway. The imbalance of this pathway is often linked to a variety of malignancies. Notch signaling is essential for cellular functions like proliferation, differentiation, and death. The cellular response is shaped by these lncRNAs through their modulation of essential Notch pathway constituents such as receptors, ligands, and downstream effectors around it. Furthermore, a variety of cancer types exhibit irregular expression of Notch-related lncRNAs, underscoring their potential use as therapeutic targets and diagnostic markers. Gaining an understanding of the molecular processes behind the interaction between the Notch pathway and lncRNAs will help you better understand the intricate regulatory networks that control the development of cancer. This can open up new possibilities for individualized treatment plans and focused therapeutic interventions. The intricate relationships between lncRNAs & the Notch pathway in cancer are examined in this review.
Collapse
Affiliation(s)
- Raihan Siddique
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Johar Mgm
- Management and Science University (MSU), Shah Alam, Selangor 40100 MSU, Malaysia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand- 831001, India
| | - I A Ariffin
- Management and Science University (MSU), Shah Alam, Selangor 40100 MSU, Malaysia
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Krishna Murari
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Riya Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
2
|
Zhang F, Zhang G, Zhang H, Pu X, Chi F, Zhang D, Xin X, Gao M, Luo W, Li X. HOXA-AS2 may be a potential prognostic biomarker in human cancers: A meta-analysis and bioinformatics analysis. Front Genet 2022; 13:944278. [DOI: 10.3389/fgene.2022.944278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Dysregulation of long non-coding (lncRNA) has been reported in various solid tumors. HOXA cluster antisense RNA 2 (HOXA-AS2) is a newly identified lncRNA with abnormal expression in several human malignancies. However, its prognostic value remains controversial. This meta-analysis synthesized available data to clarify the association between HOXA-AS2 expression levels and clinical prognosis in multiple cancers.Methods: Four public databases (Embase, PubMed, Web of Science, The Cochrane Library) were used to identify eligible studies. Hazard ratios (HRs) and odds ratios (ORs) with their 95% confidence intervals (CIs) were combined to assess the correlation of HOXA-AS2 expression with survival outcomes and clinicopathological features of cancer patients. Publication bias was measured using Begg’s funnel plot and Egger’s regression test, and the stability of the combined results was measured using sensitivity analysis. Additionally, multiple public databases were screened and extracted to validate the results of this meta-analysis.Results: The study included 20 studies, containing 1331 patients. The meta-analysis showed that the overexpression of HOXA-AS2 was associated with poor overall survival (HR = 2.06, 95% CI 1.58–2.69, p < 0.001). In addition, the high expression of HOXA-AS2 could forecast advanced tumor stage (OR = 3.89, 95% CI 2.90–5.21, p < 0.001), earlier lymph node metastasis (OR = 3.48, 95% CI 2.29–5.29, p < 0.001), larger tumor size (OR = 2.36, 95% CI 1.52–3.66, p < 0.001) and earlier distant metastasis (OR = 3.54, 95% CI 2.00–6.28, p < 0.001). However, other clinicopathological features, including age (OR = 1.09, 95% CI 0.86–1.38, p = 0.467), gender (OR = 0.92, 95% CI 0.72–1.18, p = 0.496), depth of invasion (OR = 2.13, 95% CI 0.77–5.90, p = 0.146) and differentiation (OR = 1.02, 95% CI 0.65–1.59, p = 0.945) were not significantly different from HOXA-AS2 expression.Conclusion: Our study showed that the overexpression of HOXA-AS2 was related to poor overall survival and clinicopathological features. HOXA-AS2 may serve as a potential prognostic indicator and therapeutic target for tumor treatment.
Collapse
|
3
|
Zhang C, Ren X, Zhang W, He L, Qi L, Chen R, Tu C, Li Z. Prognostic and clinical significance of long non-coding RNA SNHG12 expression in various cancers. Bioengineered 2020; 11:1112-1123. [PMID: 33124951 PMCID: PMC8291808 DOI: 10.1080/21655979.2020.1831361] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recently, increasing studies suggested that lncRNA SNHG12 was aberrantly expressed in kinds of cancers. However, definite prognostic value of SNHG12 remains unclear. We conducted this meta-analysis to evaluate the association between SNHG12 expression level and cancer prognosis. A literature retrieval was conducted by searching kinds of databases. The meta-analysis was performed by using Revman 5.2 and Stata 12.0 software. Besides, The Cancer Genome Atlas dataset was analyzed to validate the results in our meta-analysis via using Gene Expression Profiling Interactive Analysis. The pooled results showed that high SNHG12 expression significantly indicated worse overall survival and recurrence-free survival. Tumor type, sample size, survival analysis method, and cutoff value did not alter SNHG12 prognosis value according to stratified analysis results. Additionally, higher expression of SNHG12 suggested unfavorable clinicopathological outcomes including larger tumor size, lymph node metastasis, distant metastasis, and advanced clinical stage. Online cross-validation in TCGA dataset further indicated that cancer patients with upregulated SNHG12 expression had worse overall survival and disease-free survival. Therefore, elevated SNHG12 expression was associated with poor survival and unfavorable clinical outcomes in various cancers, and therefore might be a potential prognostic biomarker in human cancers. Abbreviations Akt: protein kinase B; CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; ceRNA: competitive endogenous RNA; CNKI: China National Knowledge Infrastructure; CI: confidence interval; CCNE1: cyclin E1; COAD: colon adenocarcinoma; DM: distant metastasis; DFS: disease-free survival; EMT: epithelial–mesenchymal transition; FISH: fluorescence in situ hybridization; FIGO: the International Federation of Gynecology and Obstetrics; GEPIA: Gene Expression Profiling Interactive Analysis; HR: hazard ratio; HIFα: hypoxia-inducible factor 1 α; KIRC: kidney renal clear cell carcinoma; KIRP: kidney renal papillary cell carcinoma; LIHC: hepatocellular carcinoma; LNM: lymph node metastasis; mTOR: mechanistic target of rapamycin kinase; MMP-9: matrix metalloproteinase 9; MCL1: myeloid cell leukemia 1; MLK3: mixed-lineage protein kinase 3; N/A: not available; NOS: Newcastle-Ottawa Scale; OR: odd ratio; OS: overall survival; PSA: prostate-specific antigen; PI3K: phosphoinositide 3-kinase; qRT-PCR: quantitative real-time polymerase chain reaction; READ: rectum adenocarcinoma; RFS: recurrence-free survival; SARC: sarcoma; SNHG12: small nucleolar RNA host gene 12; STAT3: signal transducer and activator of transcription 3; SOX4: SRY-box transcription factor 4; SOX5: SRY-box transcription factor 5; STAD: stomach adenocarcinoma; TCGA: The Cancer Genome Atlas; TNM: tumor node metastasis; WWP1: WW domain-containing E3 ubiquitin protein ligase 1; WHO grade: World Health Organization grade; ZEB2: zinc finger E-box-binding homeobox 2
Collapse
Affiliation(s)
- Chenghao Zhang
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| | - Xiaolei Ren
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| | - Wenchao Zhang
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| | - Lile He
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| | - Lin Qi
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| | - Ruiqi Chen
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| | - Chao Tu
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| | - Zhihong Li
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| |
Collapse
|
4
|
Cheng J, Duan Y, Zhang F, Shi J, Li H, Wang F, Li H. The Role of lncRNA TUG1 in the Parkinson Disease and Its Effect on Microglial Inflammatory Response. Neuromolecular Med 2020; 23:327-334. [PMID: 33085068 DOI: 10.1007/s12017-020-08626-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in the middle-aged and elderly populations. The purpose of this study was to investigate the clinical value of lncRNA TUG1 in PD and its effect on the microglial inflammatory response. A total of 181 subjects were recruited for the study, including 97 patients with PD (male/female 50/47) and 84 healthy individuals (male/female 41/43). There was no significant difference for gender and age distribution between the groups. The expression of serum TUG1 was determined by qRT-PCR. The receiver operating curve (ROC) was applied for diagnostic value analysis. CCK-8 was used to detect the effect of TUG1 on the proliferation of BV2 cells. The motor coordination ability of mice was tested by the rotarod and pole tests. ELISA was used to detect serum pro-inflammatory factors. TUG1 was highly expressed in the serum of PD patients. Serum TUG1 can distinguish PD patients to form healthy controls with the AUC of 0.902. Serum TUG1 was positively correlated with the levels of UPDRS, IL-6, IL-1β, and TNF-α in PD patients. Cell experiment results showed that the downregulation of TUG1 significantly inhibited cell proliferation and the release of TNF-α, IL-6, and IL-1β. Besides, animal experiments suggested that the downregulation of TUG1 significantly improved the motor coordination ability of the PD mice and inhibited the expression of inflammatory factors. lncRNA TUG1 is a latent biomarker of PD patients. TUG1 downregulation may inhibit the inflammatory response in the progression of PD. These findings provide a possible target for the early diagnosis and therapeutic intervention of PD.
Collapse
Affiliation(s)
- Jiang Cheng
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, NO.804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Yangyang Duan
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Fengting Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jin Shi
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hui Li
- Department of Computer Science, Jiangsu Ocean University, Lianyungang, 222000, Jiangsu, China
| | - Feng Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, NO.804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| | - Haining Li
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, NO.804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
5
|
Ding J, Su S, You T, Xia T, Lin X, Chen Z, Zhang L. Serum interleukin-6 level is correlated with the disease activity of systemic lupus erythematosus: a meta-analysis. Clinics (Sao Paulo) 2020; 75:e1801. [PMID: 33084768 PMCID: PMC7536892 DOI: 10.6061/clinics/2020/e1801] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Interleukin-6 (IL-6) plays a crucial role in systemic autoimmunity and pathologic inflammation. Numerous studies have explored serum IL-6 levels in systemic lupus erythematosus (SLE) and their correlation with disease activity. Here, we performed a meta-analysis to quantitatively assess the correlation between the serum IL-6 levels and SLE activity. The PubMed and EMBASE databases were thoroughly searched for relevant studies up to September 2019. Standardized mean differences (SMDs) with 95% confidence intervals (95% CIs) were used to describe the differences between serum IL-6 levels in SLE patients and healthy controls and between those in active SLE patients and inactive SLE patients. The correlation between the serum IL-6 levels and disease activity was evaluated using Fisher's z values. A total of 24 studies involving 1817 SLE patients and 874 healthy controls were included in this meta-analysis. Serum IL-6 levels were significantly higher in SLE patients than in the healthy controls (pooled SMD: 2.12, 95% CI: 1.21-3.03, Active SLE patients had higher serum IL-6 levels than inactive SLE patients (pooled SMD: 2.12, 95% CI: 1.21-3.03). Furthermore, the pooled Fisher's z values (pooled Fisher's z=0.36, 95% CI: 0.26-0.46, p<0.01) showed that there was a positive correlation between the serum IL-6 levels and SLE activity. This study suggested that serum IL-6 levels were higher in patients with SLE than in healthy controls, and they were positively correlated with disease activity when Systemic Lupus Erythematosus Disease Activity Index>4 was defined as active SLE. More homogeneous studies with large sample sizes are warranted to confirm our findings due to several limitations in our meta-analysis.
Collapse
Affiliation(s)
- Jianwen Ding
- Department of Kidney Disease, Lanzhou University Second Hospital, Lanzhou 730030, China
- *Corresponding authors. E-mail: / / E-mail:
| | - Shujun Su
- Department of Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Corresponding authors. E-mail: / / E-mail:
| | - Tao You
- Department of Endocrinology and Rheumatology, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
- *Corresponding authors. E-mail: / / E-mail:
| | - Tingting Xia
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou city, Guangdong Province, China
| | - Xiaoying Lin
- Department of Endocrinology and Rheumatology, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
| | - Zhaocong Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
- *Corresponding authors. E-mail: / / E-mail:
| | - Liqun Zhang
- Department of Endocrinology and Rheumatology, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
- *Corresponding authors. E-mail: / / E-mail:
| |
Collapse
|
6
|
Jin SJ, Jin MZ, Xia BR, Jin WL. Long Non-coding RNA DANCR as an Emerging Therapeutic Target in Human Cancers. Front Oncol 2019; 9:1225. [PMID: 31799189 PMCID: PMC6874123 DOI: 10.3389/fonc.2019.01225] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators of numerous biological processes, especially in cancer development. Aberrantly expressed and specifically located in tumor cells, they exert distinct functions in different cancers via regulating multiple downstream targets such as chromatins, RNAs, and proteins. Differentiation antagonizing non-protein coding RNA (DANCR) is a cytoplasmic lncRNA that generally works as a tumor promoter. Mechanically, DANCR promotes the functions of vital components in the oncogene network by sponging their corresponding microRNAs or by interacting with various regulating proteins. DANCR's distinct expression in tumor cells and collective involvement in pro-tumor pathways make it a promising therapeutic target for broad cancer treatment. Herein, we summarize the functions and molecular mechanism of DANCR in human cancers. Furthermore, we introduce the use of CRISPR/Cas9, antisense oligonucleotides and small interfering RNAs as well as viral, lipid, or exosomal vectors for onco-lncRNA targeted treatment. Conclusively, DANCR is a considerable promoter of cancers with a bright prospect in targeted therapy.
Collapse
Affiliation(s)
- Shi-Jia Jin
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Department of Instrument Science and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bai-Rong Xia
- Department of Gynecology, The Affiliated Tumor Hospital, Harbin Medical University, Harbin, China
| | - Wei-Lin Jin
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Department of Instrument Science and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China.,National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|