1
|
Chen Z, Yu T, Wang Y, Li J, Zhang B, Zhou L. Mechanistic insights into the role of traditional Chinese medicine in treating gastric cancer. Front Oncol 2025; 14:1443686. [PMID: 39906672 PMCID: PMC11790455 DOI: 10.3389/fonc.2024.1443686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
Gastric cancer remains a leading cause of cancer-related mortality worldwide, with advanced stages presenting significant challenges due to metastasis and drug resistance. Traditional Chinese Medicine (TCM) offers a promising complementary approach characterized by holistic treatment principles and minimal side effects. This review comprehensively explores the multifaceted mechanisms by which TCM addresses gastric cancer. Specifically, we detail how TCM inhibits aerobic glycolysis by downregulating key glycolytic enzymes and metabolic pathways, thereby reducing the energy supply essential for cancer cell proliferation. We examine how TCM suppresses angiogenesis by targeting the vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) pathways, effectively starving tumors of nutrients and oxygen required for growth and metastasis. Furthermore, TCM modulates the immune microenvironment by enhancing the activity of effector immune cells such as CD4+ and CD8+ T cells and natural killer (NK) cells while reducing immunosuppressive cells like regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). These actions collectively contribute to slowing tumor progression, inhibiting metastasis, and enhancing the body's antitumor response. The insights presented underscore the significant potential of TCM as an integral component of comprehensive gastric cancer treatment strategies, highlighting avenues for future research and clinical application to improve patient outcomes.
Collapse
Affiliation(s)
- Ziqiang Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ting Yu
- Department of Rheumatism, Third Affiliated Clinical Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yunhe Wang
- Department of Endocrinology, Metabolism and Gastroenterology, Third Affiliated Clinical Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiaxin Li
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bo Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Liya Zhou
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
2
|
Zhang B, Chao W, Di W, Cao S, Donkor PO, Wang L, Qiu F. Undescribed sesquiterpenoids with NO production inhibitory activity from oleo-gum resin of Commiphora myrrha. PHYTOCHEMISTRY 2024; 220:114031. [PMID: 38369171 DOI: 10.1016/j.phytochem.2024.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Six undescribed cadinane sesquiterpenoids (1-6), two undescribed guaiane sesquiterpenoids (7-8), and an undescribed germacrane sesquiterpenoid (9) were isolated from the oleo-gum resin of Commiphora myrrha. Their structures were determined by the analysis of 1D/2D NMR and HRESIMS data, as well as quantum chemical ECD and NMR calculations. All the sesquiterpenoids were evaluated for their NO production inhibitory activity in LPS-stimulated RAW 264.7 mouse monocyte-macrophages. The results revealed that commiphone A (1) and commipholide D (7) exhibited significant inhibitory effect on NO generation with IC50 values of 18.6 ± 2.0 and 37.5 ± 1.5 μM, respectively. Furthermore, 1 and 7 dose-dependently inhibited the mRNA expression of inflammatory cytokines IL-1β, IL-6 and TNF-α induced by LPS in the RAW264.7 cells, indicating that 1 and 7 possess potent anti-inflammatory activity in vitro.
Collapse
Affiliation(s)
- Bingyang Zhang
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenhua Chao
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Weiyun Di
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | | | - Lining Wang
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Feng Qiu
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Shams A, Alzahrani AA, Ayash TA, Tamur S, Al-Mourgi M. The Multifaceted Roles of Myrrha in the Treatment of Breast Cancer: Potential Therapeutic Targets and Promises. Integr Cancer Ther 2024; 23:15347354241309659. [PMID: 39707884 DOI: 10.1177/15347354241309659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Breast cancer is a critical threat to human health, and effective targeted agents showing lower systemic toxicity are still lacking. Therefore, exploring new potent therapeutic candidates with a broader safety margin is warranted. Alternative medicine, which has historically been used in traditional Chinese medicine, has played an increasingly prominent role in this area of research. This study introduces Commiphora myrrha (or myrrh) as a potential therapeutic candidate for treating breast cancer patients. Myrrh bioactive extracts have been used traditionally for decades to treat numerous medical disorders, including cancers, specifically breast cancer. Nonetheless, myrrh's precise rudimentary mechanisms of action in regulating genes involved in breast cancer evolution and progression remain elusive. PURPOSE Herein, we use a network pharmacology platform to identify the potential genes targeted by myrrh-active molecules in breast cancer. METHOD The identified targets' expression profiles were determined at the mRNA and protein levels using The Breast Cancer Gene-Expression Miner v5.0 (bcGen-ExMiner v5.0) and The Human Protein Atlas datasets, respectively. A gene signature composed of the specifically designated genes was constructed, and its association with different breast cancer molecular subtypes was investigated through the Gene expression-based Outcome for Breast Cancer (GOBO) online tool. The protein mapping relationship between potential myrrh targets and their partner proteins during breast cancer development was screened and constructed through the STRING and ShinyGO databases. In addition, the Kaplan-Meier plots (KM-plot) prognostic tool was applied to assess the survival rate associated with the expression of the current gene signature in different human cancers, including breast cancer. RESULTS Combining the results of network pharmacology with other bioinformatics databases suggests that myrrh's active components exert anti-cancer effects by regulating genes involved in breast cancer pathogenesis, particularly PTGS2, EGFR, ESR2, MMP2, and JUN. An individual evaluation of the expression profiles of these genes at both mRNA and protein levels reveals that a high expression profile of each gene is associated with breast cancer advancement. Moreover, the GOBO analysis shows an elevated expression profile of the PTGS2/ESR2/EGFR/JUN/MMP2 genes' signature in the most aggressive breast cancer subtype (Basal) in breast tumor samples and breast cancer cell lines. Furthermore, the STRING protein interaction network and the KEGG analyses indicate that myrrh exerts therapeutic effects on breast cancer by regulating several biological processes such as cell proliferation, cell migration, apoptosis, and various signaling pathways, including TNF, PI3K-Akt, NF-κB, and MAPK. Consistently, breast cancer patients with high expression of this genes' signature display poor survival outcomes. CONCLUSIONS The present study is the first attempt to explore the biological involvement of myrrh-targeted genes during breast cancer development. Therefore, suppressing the effects of the intended genes' signature using myrrh extracts would provide encouraging results in blocking breast cancer tumorigenesis. Thus, our findings provide conclusive evidence and deepen the current understanding of the molecular role of myrrh in the treatment of breast cancer, further supporting its clinical application.
Collapse
Affiliation(s)
- Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
- High Altitude Research Center, Taif University, Taif, Saudi Arabia
| | | | - Taghreed A Ayash
- Department of General Science, Ibnsina International Medical College, Jeddah, Saudi Arabia
- Research and Innovation Central lab, Chair of Research and Innovation Central Lab, Ibnsina International Medical College, Jeddah, Saudi Arabia
| | - Shadi Tamur
- Department of Pediatric, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Majed Al-Mourgi
- Department of Surgery, College of Medicine, Taif University, Taif, Saudi Arabia
| |
Collapse
|
4
|
Lu X, Mao J, Wang Y, Huang Y, Gu M. Water extract of frankincense and myrrh inhibits liver cancer progression and epithelial‑mesenchymal transition through Wnt/β‑catenin signaling. Mol Clin Oncol 2023; 19:77. [PMID: 37719039 PMCID: PMC10502803 DOI: 10.3892/mco.2023.2673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/27/2023] [Indexed: 09/19/2023] Open
Abstract
Wnt/β-catenin signaling is associated with epithelial-mesenchymal transformation (EMT), which serves an important role in hepatocellular carcinoma (HCC) invasion and metastasis. Frankincense and myrrh (FM) are antitumor agents commonly used in clinical practice. The present study aimed to investigate the effect and mechanism of water extract of FM on the progression of liver cancer cells. FM was applied to study its effects on HCC cell proliferation. Cell migration and invasion were evaluated by wound healing and Transwell assays. In addition, western blot was used to study the protein levels associated with EMT and Wnt/β-catenin signaling. The nuclear translocation of β-catenin was detected by immunofluorescence assay. A non-toxic dose of FM significantly inhibited invasion and metastasis of liver cancer cells. Furthermore, FM promoted expression of EMT marker E-cadherin, while decreasing expression of vimentin and N-cadherin. Finally, the protein and the nuclear staining levels of Disheveled 2 and β-catenin were both suppressed by water extract of FM. The water extract of FM inhibited the migration and invasion of liver cancer cells and inhibited EMT by suppressing activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xian Lu
- Department of Hepatic Surgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215300, P.R. China
| | - Jialei Mao
- Department of Oncology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215300, P.R. China
| | - Yaodong Wang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215300, P.R. China
| | - Yonggang Huang
- Department of Hepatic Surgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215300, P.R. China
| | - Maolin Gu
- Department of Hepatic Surgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215300, P.R. China
| |
Collapse
|
5
|
Xu HB, Chen XZ, Yu ZL, Xue F. Guggulsterone from Commiphora mukul potentiates anti-glioblastoma efficacy of temozolomide in vitro and in vivo via down-regulating EGFR/PI3K/Akt signaling and NF-κB activation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115855. [PMID: 36280019 DOI: 10.1016/j.jep.2022.115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myrrh is an aromatic oleo-gum resin extracted from the stem of Commiphora myrrha (Nees) Engl., and has the efficacies to promote blood circulation and remove blood stasis. Myrrh is mainly used for the treatment of chronic diseases including cancer. Guggulsterone, a major active steroid extracted from myrrh, has been found to inhibit cancer cell growth. Glioblastoma is the most common malignancy of central nervous system, and its prognosis remains very poor mainly due to chemotherapeutic resistance. The active status of EGFR/PI3K/Akt and NF-κB signaling in glioblastoma contributed to poor response for chemotherapy, and blocking this signaling with antagonists sensitized glioblastoma cells to chemotherapy. AIM OF THE STUDY The present study will investigate whether guggulsterone potentiates the anti-glioblastoma efficacy of temozolomide by down-regulating EGFR/PI3K/Akt signaling and NF-κB activation. MATERIALS AND METHODS Cell viability and proliferation was determined by cell counting Kit-8 and colony formation assays. Cell apoptosis was evaluated by Annexin V/PI and hoechst 33342 staining assays. Molecular techniques such as western blotting and real-time quantitative PCR were used to demonstrate guggulsterone in vitro effect on EGFR/PI3K/Akt signaling and NF-κB activation. Finally, in vivo studies were performed in orthotopic mouse models of glioblastoma. RESULTS The results demonstrated that guggulsterone enhanced temozolomide-induced growth inhibition and apoptosis in human glioblastoma U251 and U87 cells. Furthermore, the synergistic anti-glioblastoma efficacy between guggulsterone and temozolomide was intimately associated with the inhibition of EGFR/PI3K/Akt signaling and NF-κB activation in U251 and U87 cells. Our in vivo results on orthotopic xenograft models similarly indicated that guggulsterone potentiated temozolomide-induced tumor growth inhibition through suppressing EGFR/PI3K/Akt signaling pathway and NF-кB activity. CONCLUSIONS The present study suggested that guggulsterone potentiated anti-glioblastoma efficacy of temozolomide through down-regulating EGFR/PI3K/Akt signaling pathway and NF-кB activation.
Collapse
Affiliation(s)
- Hong-Bin Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, 315010, China.
| | - Xian-Zhen Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Zhou-Lun Yu
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210017, China.
| | - Fei Xue
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
6
|
Batiha GES, Wasef L, Teibo JO, Shaheen HM, Zakariya AM, Akinfe OA, Teibo TKA, Al-kuraishy HM, Al-Garbee AI, Alexiou A, Papadakis M. Commiphora myrrh: a phytochemical and pharmacological update. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:405-420. [PMID: 36399185 PMCID: PMC9672555 DOI: 10.1007/s00210-022-02325-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
Medicinal plants have a long track record of use in history, and one of them is Commiphora myrrh which is commonly found in the southern part of Arabia, the northeastern part of Africa, in Somalia, and Kenya. Relevant literatures were accessed via Google Scholar, PubMed, Scopus, and Web of Science to give updated information on the phytochemical constituents and pharmacological action of Commiphora myrrh. It has been used traditionally for treating wounds, mouth ulcers, aches, fractures, stomach disorders, microbial infections, and inflammatory diseases. It is used as an antiseptic, astringent, anthelmintic, carminative, emmenagogue, and as an expectorant. Phytochemical studies have shown that it contains terpenoids (monoterpenoids, sesquiterpenoids, and volatile/essential oil), diterpenoids, triterpenoids, and steroids. Its essential oil has applications in cosmetics, aromatherapy, and perfumery. Research has shown that it exerts various biological activities such as anti-inflammatory, antioxidant, anti-microbial, neuroprotective, anti-diabetic, anti-cancer, analgesic, anti-parasitic, and recently, it was found to work against respiratory infections like COVID-19. With the advancement in drug development, hopefully, its rich phytochemical components can be explored for drug development as an insecticide due to its great anti-parasitic activity. Also, its interactions with drugs can be fully elucidated.This review highlights an updated information on the history, distribution, traditional uses, phytochemical components, pharmacology, and various biological activities of Commiphora myrrh. Graphical summary of the phytochemical and pharmacological update of Commiphora myrrh.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| | - Lamiaa Wasef
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - John Oluwafemi Teibo
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Hazem M. Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | | | | | - Titilade Kehinde Ayandeyi Teibo
- Department of Maternal-Infant and Public Health Nursing, College of Nursing, Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo Brazil
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Almustansiriyiah University, Bagh-Dad, Iraq
| | - Ali I. Al-Garbee
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Almustansiriyiah University, Bagh-Dad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia ,AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| |
Collapse
|
7
|
Shi X, Jie L, Wu P, Mao J, Wang P, Liu Z, Yin S. Comprehensive Network Pharmacological Analysis and In Vitro Verification Reveal the Potential Active Ingredients and Potential Mechanisms of Frankincense and Myrrh in Knee Osteoarthritis. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Frankincense and myrrh (FM) are often used together to treat knee osteoarthritis (KOA). However, the underlying mechanism of its treatment of KOA remains unclear. Objective: To analyze the active components of FM through network pharmacology and in vitro experiments, and to explore its potential therapeutic mechanism in the treatment of KOA. Materials and methods: The protein mapping relationship between potential drug targets and disease targets was screened and constructed through the database. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using R software. Discovery Studio software was used to perform molecular docking. The active components of FM were identified using liquid chromatography–mass spectrometry (LC-MS). In addition, experimental verification was carried out by Cell Counting Kit-8 detection, Western blot, and immunofluorescence analysis. Results: Combining the results of network pharmacology and LC-MS, 31 active compounds and 94 target genes of FM were identified. The common genes of FM and KOA suggest that FM exerts anti-KOA effect by regulating genes such as Transcription factor Jun (JUN), Interleukin-6 (IL-6), Interleukin-1 beta (IL-1β), C-X-C motif chemokine ligand 8 (CXCL8), Transcription factor p65 (RELA), and Mitogen-activated protein kinase 1 (MAPK1). GO enrichment analysis showed that FM exerted therapeutic effects on KOA by regulating biological processes such as cell proliferation, cell migration, and apoptosis. In addition, KEGG enrichment analysis involved signaling pathways such as fluid shear stress, the TNF, PI3K-Akt, NF-κB, and MAPK. Consistently, in vivo experiments showed that FM inhibited IL-1β-induced MAPK activation and attenuated inflammation in mouse chondrocytes. Furthermore, FM inhibited IL-1β-induced phosphorylation of p65 and the process of p65 translocation from the cytoplasm into the nucleus. Conclusions: Our results provide conclusive evidence and deepen the current understanding of FM in the treatment of KOA and further support its clinical application.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lishi Jie
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Wu
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Mao
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peimin Wang
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zixiu Liu
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Songjiang Yin
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
The Role of Myrrh Metabolites in Cancer, Inflammation, and Wound Healing: Prospects for a Multi-Targeted Drug Therapy. Pharmaceuticals (Basel) 2022; 15:ph15080944. [PMID: 36015092 PMCID: PMC9416713 DOI: 10.3390/ph15080944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Myrrh extract is a well-known medicinal plant with significant therapeutic benefits attributed to the activity of its diverse metabolites. It has promising activity against cancer and inflammatory diseases, and could serve as a potential therapeutic alternative since most therapeutic agents have severe side effects that impair quality of life. Method: The current study identified the active metabolites from the myrrh resin methanolic extract. Then, the extracts were tested for in vitro anti-inflammatory and anti-cancer activity using cancer cell lines and Tamm-Horsfall Protein 1 (Thp-1)-like macrophage cell lines. Furthermore, using an in vivo rat model, the extracts’ anti-inflammatory and wound-healing activity was investigated. In addition, in silico predictions of the myrrh constituents highlighted the pharmacokinetic properties, molecular targets, and safety profile, including cytochrome P 450 (CYP) inhibition and organ toxicity. Results: Nine secondary metabolites were identified, and computational predictions suggested a good absorption profile, anticancer, anti-inflammatory, and wound-healing effects. The myrrh extract had moderate cytotoxic activity against both HL60 and K562 leukemia cell lines and the KAIMRC1 breast cancer cell line. Myrrh caused a dose-dependent effect on macrophages to increase the reactive oxygen species (ROS) levels, promote their polarization to classically activated macrophages (M1) and alternatively activated macrophages (M2) phenotypes, and consequently induce apoptosis, highlighting its ability to modulate macrophage function, which could potentially aid in several desired therapeutic processes, including the resolution of inflammation, and autophagy which is an important aspect to consider in cancer treatment. The topical application of myrrh improved wound healing, with no delayed inflammatory response, and promoted complete re-epithelization of the skin, similar to the positive control. In conclusion, we provide evidence for the methanolic extract of myrrh having cytotoxic activity against cancer cells and anti-inflammatory wound-healing properties, which may be attributed to its role in modulating macrophage function. Furthermore, we suggest the active constituents responsible for these properties, which warrants further studies focusing on the precise roles of the active metabolites.
Collapse
|
9
|
Paclitaxel and Myrrh oil Combination Therapy for Enhancement of Cytotoxicity against Breast Cancer; QbD Approach. Processes (Basel) 2022. [DOI: 10.3390/pr10050907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Paclitaxel (PX), plant alkaloid, is a chemotherapeutic agent intended for treating a wide variety of cancers. The objective of the present study was to formulate and evaluate the anticancer activity of PX loaded into a nanocarrier, mainly PEGylated nanoemulsion (NE) fabricated with myrrh essential oil. Myrrh essential oil has been estimated previously to show respectable anticancer activity. Surface modification of the formulation with PEG-DSPE would help in avoiding phagocytosis and prolong the residence time in blood circulation. Various NE formulations were developed after operating (22) factorial design, characterized for their particle size, in vitro release, and hemolytic activity. The optimized formula was selected and compared to its naked counterpart in respect to several characterizations. Quantitative amount of protein absorbed on the formulation surfaces and in vitro release with and without serum incubation were evaluated. Ultimately, MTT assay was conducted to distinguish the anti-proliferative activity. PEGylated PX-NE showed particle size 170 nm, viscosity 2.91 cP, in vitro release 57.5%, and hemolysis 3.44%, which were suitable for intravenous administration. A lower amount of serum protein adsorbed on PEGylated PX-NE surface (16.57 µg/µmol) compared to naked counterpart (45.73 µg/µmol). In vitro release from PEGylated NE following serum incubation was not greatly affected (63.3%), in contrast to the naked counterpart (78.8%). Eventually, anti-proliferative effect was obtained for PEGylated PX-NE achieving IC50 38.66 µg/mL. The results obtained recommend PEGylated NE of myrrh essential oil as a candidate nanocarrier for passive targeting of PX.
Collapse
|
10
|
Zheng P, Huang Z, Tong DC, Zhou Q, Tian S, Chen BW, Ning DM, Guo YM, Zhu WH, Long Y, Xiao W, Deng Z, Lei YC, Tian XF. Frankincense myrrh attenuates hepatocellular carcinoma by regulating tumor blood vessel development through multiple epidermal growth factor receptor-mediated signaling pathways. World J Gastrointest Oncol 2022; 14:450-477. [PMID: 35317323 PMCID: PMC8919004 DOI: 10.4251/wjgo.v14.i2.450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/19/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In traditional Chinese medicine (TCM), frankincense and myrrh are the main components of the antitumor drug Xihuang Pill. These compounds show anticancer activity in other biological systems. However, whether frankincense and/or myrrh can inhibit the occurrence of hepatocellular carcinoma (HCC) is unknown, and the potential molecular mechanism(s) has not yet been determined.
AIM To predict and determine latent anti-HCC therapeutic targets and molecular mechanisms of frankincense and myrrh in vivo.
METHODS In the present study, which was based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (http://tcmspw.com/tcmsp.php), Universal Protein database (http://www.uniprot.org), GeneCards: The Human Gene Database (http://www.genecards.org/) and Comparative Toxicogenomics Database (http://www.ctdbase.org/), the efficacy of and mechanism by which frankincense and myrrh act as anti-HCC compounds were predicted. The core prediction targets were screened by molecular docking. In vivo, SMMC-7721 human liver cancer cells were transplanted as xenografts into nude mice to establish a subcutaneous tumor model, and two doses of frankincense plus myrrh or one dose of an EGFR inhibitor was administered to these mice continuously for 14 d. The tumors were collected and evaluated: the tumor volume and growth rate were gauged to evaluate tumor growth; hematoxylin-eosin staining was performed to estimate histopathological changes; immunofluorescence (IF) was performed to detect the expression of CD31, α-SMA and collagen IV; transmission electron microscopy (TEM) was conducted to observe the morphological structure of vascular cells; enzyme-linked immunosorbent assay (ELISA) was performed to measure the levels of secreted HIF-1α and TNF-α; reverse transcription-polymerase chain reaction (RT-qPCR) was performed to measure the mRNA expression of HIF-1α, TNF-α, VEGF and MMP-9; and Western blot (WB) was performed to determine the levels of proteins expressed in the EGFR-mediated PI3K/Akt and MAPK signaling pathways.
RESULTS The results of the network pharmacology analysis showed that there were 35 active components in the frankincense and myrrh extracts targeting 151 key targets. The molecular docking analysis showed that both boswellic acid and stigmasterol showed strong affinity for the targets, with the greatest affinity for EGFR. Frankincense and myrrh treatment may play a role in the treatment of HCC by regulating hypoxia responses and vascular system-related pathological processes, such as cytokine-receptor binding, and pathways, such as those involving serine/threonine protein kinase complexes and MAPK, HIF-1 and ErbB signaling cascades. The animal experiment results were verified. First, we found that, through frankincense and/or myrrh treatment, the volume of subcutaneously transplanted HCC tumors was significantly reduced, and the pathological morphology was attenuated. Then, IF and TEM showed that frankincense and/or myrrh treatment reduced CD31 and collagen IV expression, increased the coverage of perivascular cells, tightened the connection between cells, and improved the shape of blood vessels. In addition, ELISA, RT-qPCR and WB analyses showed that frankincense and/or myrrh treatment inhibited the levels of hypoxia-inducible factors, inflammatory factors and angiogenesis-related factors, namely, HIF-1α, TNF-α, VEGF and MMP-9. Furthermore, mechanistic experiments illustrated that the effect of frankincense plus myrrh treatment was similar to that of an EGFR inhibitor with regard to controlling EGFR activation, thereby inhibiting the phosphorylation activity of its downstream targets: the PI3K/Akt and MAPK (ERK, p38 and JNK) pathways.
CONCLUSION In summary, frankincense and myrrh treatment targets tumor blood vessels to exert anti-HCC effects via EGFR-activated PI3K/Akt and MAPK signaling pathways, highlighting the potential of this dual TCM compound as an anti-HCC candidate.
Collapse
Affiliation(s)
- Piao Zheng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Zhen Huang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Dong-Chang Tong
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Qing Zhou
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Sha Tian
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Bo-Wei Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Di-Min Ning
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Yin-Mei Guo
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Wen-Hao Zhu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Yan Long
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Wei Xiao
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Zhe Deng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Yi-Chen Lei
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Xue-Fei Tian
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
11
|
Saydam F, Nalkiran HS. Anticancer effects of a novel herbal combination as a potential therapeutic candidate against lung cancer. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|