1
|
Zhou P, Liu Y, Wu G, Lu K, Zhao T, Yang L. LincRNA PRNCR1 activates the Wnt/β-catenin pathway to drive the deterioration of hepatocellular carcinoma via regulating miR-411-3p/ZEB1 axis. Biotechnol Genet Eng Rev 2024; 40:4809-4824. [PMID: 37243586 DOI: 10.1080/02648725.2023.2216966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is an intractable malignant disease with high incidence rate annually. LincRNA PRNCR1 has been confirmed as a tumor supporter, while its functions in HCC remain unclear. This study aims to explore the mechanism of LincRNA PRNCR1 in hepatocellular carcinoma. The qRT-PCR was applied to the quantification of non-coding RNAs. Cell counting Kit-8 (CCK-8), Transwell assay and flow cytometry assay were applied to reflect the change in the phenotype of HCC cells. Moreover, the databases including Targetscan and Starbase and dual-luciferase reporter assay were applied to investigate the interaction of the genes. The western blot was applied to detect the abundance of proteins and the activity of the related pathways. Elevated LincRNA PRNCR1 was dramatically upregulated in HCC pathological samples and cell lines. MiR-411-3p served as a target of LincRNA PRNCR1, and decreased miR-411-3p was found in the clinical samples and cell lines. LincRNA PRNCR1 downregulation could induce the expression of miR-411-3p, and LincRNA PRNCR1 silence could impede the malignant behaviors via increasing the abundance of miR-411-3p. Zinc finger E-box binding homeobox 1 (ZEB1) was confirmed as a target of miR-411-3p, which remarkably upregulated in HCC cells, and ZEB1 upregulation could significantly rescue the effect of miR-411-3p on malignant behaviors of HCC cells. Moreover, LincRNA PRNCR1 was confirmed to involve the Wnt/β-catenin pathway via regulating miR-411-3p/ZEB1 axis. This study suggested that LincRNA PRNCR1 could drive the malignant progression of HCC via regulating miR-411-3p/ZEB1 axis.
Collapse
Affiliation(s)
- Pingsheng Zhou
- Department of Ultrasonic Intervention, The Third Affiliated Hospital of the Naval Military Medical University, Shanghai, China
| | - Yang Liu
- Department of Biliary Tract Surgery II, The Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Guangzhen Wu
- Department of Biliary Tract Surgery II, The Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Kai Lu
- Department of Biliary Tract Surgery II, The Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Teng Zhao
- Department of Biliary Tract Surgery II, The Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Lixue Yang
- Department of Biliary Tract Surgery II, The Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| |
Collapse
|
2
|
Zhang W, Xiao P, Liu B, Zhang Y. Circ-10720 as a ceRNA adsorbs microRNA-1238 and modulates ZEB2 to boost NSCLC development by activating EMT. Eur J Med Res 2024; 29:226. [PMID: 38610009 PMCID: PMC11010388 DOI: 10.1186/s40001-024-01715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/06/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are critical regulators in the progression of tumors. This experimental design aimed to explore the mechanism of circ-10720 in non-small cell lung cancer (NSCLC). METHODS We used RT-qPCR to measure circ-10720 expression in clinical samples and analyzed its relationship with the clinicopathological characteristics of NSCLC patients. The expression levels of microRNA-1238 (miR-1238) and Zinc Finger E-box-binding Homeobox 2 (ZEB2) in clinical samples were detected by RT-qPCR. NSCLC cells were transfected with relevant plasmids or sequences. Circ-10720, miR-1238, and ZEB2 expressions in cells were analyzed via RT-qPCR or western blot. Cell proliferation, apoptosis, migration, and invasion were assessed with CCK-8, flow cytometry, and transwell assay, respectively. The protein expression of ZEB2 and epithelial-mesenchymal transition (EMT)-related markers (E-cadherin, Vimentin, N-cadherin) were detected via western blot. Xenograft assay was used to determine the effect of circ-10720 on NSCLC in vivo. Circ-10720 and ZEB2 expressions in tumors were detected using RT-qPCR or Western blot. Immunohistochemistry was used to evaluate E-cadherin and N-cadherin expression in tumors. Finally, the binding relationship between miR-1238 with circ-10720 or ZEB2 was verified by the bioinformatics website, dual luciferase reporter assay, RNA pull-down assay, and RIP assay. RESULTS Circ-10720 was upregulated in NSCLC and correlated with TNM stage of NSCLC patients. MiR-1238 was lowly expressed but ZEB2 was highly expressed in NSCLC. Circ-10720 silencing suppressed the proliferation, metastasis, and EMT of NSCLC cells. Mechanically, circ-10720 was a competitive endogenous RNA (ceRNA) for miR-1238, and ZEB2 was a target of miR-1238. circ-10720-modulated ZEB2 via competitively binding with miR-1238 to control NSCLC progression. In addition, circ-10720 knockdown suppressed tumor growth in vivo. CONCLUSIONS Circ-10720 acts as a ceRNA to adsorb miR-1238 and modulate ZEB2 to facilitate the proliferation, migration, invasion, and EMT of NSCLC cells.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, People's South Road, Section 4, Number 55, Chengdu, 610041, Sichuan, China
| | - Ping Xiao
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, Sichuan, China
| | - Bin Liu
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, People's South Road, Section 4, Number 55, Chengdu, 610041, Sichuan, China.
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Prasher P, Oliver B, Singh SK, MacLoughlin R, Dua K, Gupta G. From carcinogenesis to therapeutic avenues: lncRNAs and mTOR crosstalk in lung cancer. Pathol Res Pract 2024; 253:155015. [PMID: 38103364 DOI: 10.1016/j.prp.2023.155015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to have a crucial function in the modulation of the activity of genes, impacting a variety of homeostatic processes involving growth, survival, movement, and genomic consistency. Certain lncRNAs' aberrant expression has been linked to carcinogenesis, tumor growth, and therapeutic resistance. They are beneficial for the management of malignancies since they can function as cancer-causing or cancer-suppressing genes and behave as screening or prognosis indicators. The modulation of the tumor microenvironment, metabolic modification, and spread have all been linked to lncRNAs in lung cancer. Recent research has indicated that lncRNAs may interact with various mTOR signalling systems to control expression in lung cancer. Furthermore, the route can affect how lncRNAs are expressed. Emphasizing the function of lncRNAs as crucial participants in the mTOR pathway, the current review intends to examine the interactions between the mTOR cascade and the advancement of lung cancer. The article will shed light on the roles and processes of a few lncRNAs associated with the development of lung cancer, as well as their therapeutic prospects.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- ōDepartment of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Brian Oliver
- Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Woolcock Institute of Medical Research, Macquarie university, Sydney, NSW, 2137
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
4
|
Fu J, Yu L, Yan H, Tang S, Wang Z, Dai T, Chen H, Zhang S, Hu H, Liu T, Tang S, He R, Zhou H. LncRNAs in non-small cell lung cancer: novel diagnostic and prognostic biomarkers. Front Mol Biosci 2023; 10:1297198. [PMID: 38152110 PMCID: PMC10751344 DOI: 10.3389/fmolb.2023.1297198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the main causes of cancer-related death worldwide, with a serious impact on human health and life. The identification of NSCLC at an early stage is a formidable task that frequently culminates in a belated diagnosis. LncRNA is a kind of noncoding RNA with limited protein-coding capacity, and its expression is out of balance in many cancers, especially NSCLC. A large number of studies have reported that lncRNA acts a vital role in regulating angiogenesis, invasion, metastasis, and the proliferation and apoptosis of tumor cells, affecting the occurrence and development of NSCLC. Abundant evidence demonstrates that lncRNAs may serve as potential biomarkers for NSCLC diagnosis and prognosis. In this review, we summarize the latest progress in characterizing the functional mechanism of lncRNAs involved in the development of NSCLC and further discuss the role of lncRNAs in NSCLC therapy and chemotherapy resistance. We also discuss the advantages, limitations, and challenges of using lncRNAs as diagnostic or prognostic biomarkers in the management of NSCLC.
Collapse
Affiliation(s)
- Jiang Fu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Yu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Department of Physical Examination, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Hang Yan
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Zixu Wang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Dai
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Haoyu Chen
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, North Sichuan Medical College, Nanchong, China
| | - Song Zhang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, North Sichuan Medical College, Nanchong, China
| | - Haiyang Hu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Tao Liu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Shoujun Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Rong He
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
- Institute of Surgery, Graduate School, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
5
|
Abdi E, Latifi-Navid S, Panahi A, Latifi-Navid H. LncRNA polymorphisms and lung cancer risk. Per Med 2023; 20:511-522. [PMID: 37916472 DOI: 10.2217/pme-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Lung cancer (LC) imposes a significant burden, and is associated with high mortality and morbidity among malignant tumors. Aberrant expression of particular lncRNAs is closely linked to LC. LncRNA polymorphisms cause abnormal expression levels and/or structural dysfunction. They can affect the progression of cancer, survival, response to chemotherapy and recurrence rates in cancer patients. The present article provides a comprehensive overview of the effect of lncRNA genetic polymorphisms on LC. It is proposed that lncRNA-related variants can be used to predict cancer risk and therapeutic outcomes. More large-scale trials on diverse ethnic groups are required to validate the results, thus personalizing LC therapy based on lncRNA genotypes.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Alireza Panahi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, 14965/161, Iran
| |
Collapse
|
6
|
Gao S, Gao T, Feng L, Li H, Dong G, Yang S. CircPKM2 aggravates the progression of non-small cell lung cancer by regulating MTDH via miR-1298-5p. Thorac Cancer 2023; 14:3020-3031. [PMID: 37675591 PMCID: PMC10599976 DOI: 10.1111/1759-7714.15092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common type of lung cancer with high morbidity and mortality. The role of dysregulated circular RNAs (circRNAs) in human diseases are receiving more and more attention. In this study, we focused on the role and mechanism of circPKM2 in the progression of NSCLC. METHODS The expression levels of circPKM2, microRNA-1298-5p (miR-1298-5p) and metadherin (MTDH) in NSCLC were measured by real-time quantitative PCR (qRT-PCR) or Western blot. Cell counting kit-8 (CCK-8), colony formation, 5-ethynyl-2'-deoxyuridine (EdU) staining, flow cytometry, transwell and tube formation assays were conducted to evaluate the effects of circPKM2 on malignant phenotypes of NSCLC. Western blot was used to measure related marker protein levels. RESULTS CircPKM2 and MTDH were highly expressed in NSCLC tissues and cells, while miR-1298-5p was downregulated. CircPKM2 knockdown effectively suppressed cell proliferation, migration, invasion and tube formation whereas induced apoptosis in vitro. CircPKM2 had a potential targeting site with miR-1298-5p and negatively regulated the expression of miR-1298-5p. MiR-1298-5p inhibitor reversed the effect of circPKM2 knockdown on the progression of NSCLC. CircPKM2 induced MTDH expression via sponging miR-1298-5p to promote the progression of NSCLC. MiR-1298-5p directly targeted MTDH, and the addition of MTDH partially attenuated the inhibition of miR-1298-5p on the progression of NSCLC. In addition, the downregulation of circPKM2 significantly slowed down the growth of xenograft tumors in vivo. CONCLUSION Our findings demonstrated that circPKM2 mediated NSCLC progression via regulating miR-1298-5p/MTDH axis, providing a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Shuhua Gao
- Department of Internal Medicinethe General Hospital of Eastern Command of the Chinese People's Liberation Army (PLA)NanjingChina
| | - Tingting Gao
- Department of Disease Control and PreventionAir Force Hospital of EasternNanjingChina
| | - Li Feng
- Department of Internal Medicinethe General Hospital of Eastern Command of the Chinese People's Liberation Army (PLA)NanjingChina
| | - Haixia Li
- Department of Internal Medicinethe General Hospital of Eastern Command of the Chinese People's Liberation Army (PLA)NanjingChina
| | - Guogang Dong
- Department of Radiologythe General Hospital of Eastern Command of the Chinese People's Liberation Army (PLA)NanjingChina
| | - Shan Yang
- Department of Pharmacythe General Hospital of Eastern Command of the Chinese People's Liberation Army (PLA)NanjingChina
| |
Collapse
|
7
|
Fan X, Zou X, Liu C, Peng S, Zhang S, Zhou X, Zhu J, Zhu W. Identify miRNA-mRNA regulation pairs to explore potential pathogenesis of lung adenocarcinoma. Aging (Albany NY) 2022; 14:8357-8373. [PMID: 36260870 DOI: 10.18632/aging.204341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/10/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE MicroRNA (miRNA) function via base-pairing with complementary sequences within mRNA molecules. This study aims to identify critical miRNA-mRNA regulation pairs contributing to lung adenocarcinoma (LUAD) pathogenesis. PATIENTS AND METHODS MiRNA and mRNA microarray and RNA-sequencing datasets were downloaded from gene expression omnibus (GEO) and the cancer genome atlas (TCGA) databases. Differential miRNAs (DE-miRNAs) and mRNAs (DE-mRNAs) were screened by the GEO2R tool and R packages. DAVID, DIANA, and Hiplot tools were used to perform gene enrichment analysis. The pairs of miRNA-mRNA were screened from the experimentally validated miRNA-target interactions databases (miRTarBase and TarBase). External validation was carried out in 30 pairs of LUAD tissues by quantitative reverse transcription and polymerase chain reaction (qRT-PCR). The diagnostic value of the miRNA-mRNA regulation pairs was evaluated by receiver operating characteristic curve (ROC) and decision curve analysis (DCA). Biological function assay was were also performed to confirm the function of miRNA-mRNA axis in LUAD progression. The study also performed the clinical, survival and tumor-associated phenotypic analysis of miRNA-mRNA pairs. RESULTS A total of 7 miRNA and 13 mRNA expression datasets from GEO were analyzed, and 11 DE-miRNAs (5 down-regulated and 6 up-regulated in LUAD tissues) and 128 DE-mRNAs (30 up-regulated and 98 down-regulated in LUAD tissues) were identified. The pairs of miR-1-3p(down) and CENPF(up) and miR-126-5p(down) and UGT8(up) were verified in the external validation cohort (30 LUAD vs. 30 NC) using qRT-PCR. Areas under the ROC curve of the two miRNA-mRNA regulation pairs panel were 0.973 in TCGA-LUAD and 0.771 in the external validation. The DCA also showed that the miRNA-mRNA regulation pairs had an excellent diagnostic performance distinguishing LUAD from normal controls. The expression of the regulation pairs is different in different ages, TNM stages, and gender. The overexpression of miR-1-3p and miR-126-5p significantly inhibited the proliferation and migration of LUAD cells. Correlation analysis showed that CENPF correlated with prognosis and tumor immunity. CONCLUSIONS The research identified potential miRNA-mRNA regulation pairs, providing a new idea for exploring the genesis and development of LUAD.
Collapse
Affiliation(s)
- Xingchen Fan
- Department of Geriatrics, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang 222002, P.R. China
| | - Xuan Zou
- First Clinical College of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Cheng Liu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Shuang Peng
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Shiyu Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jun Zhu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Xuanwu, Nanjing 210009, P.R. China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
8
|
Xie Z, Xiang H, Li J, Zhang X, Li W, Tan G. SNHG20 promotes the development of laryngeal squamous cell carcinoma via miR-342-3p/MTDH axis. Heliyon 2022; 8:e10085. [PMID: 36033309 PMCID: PMC9399968 DOI: 10.1016/j.heliyon.2022.e10085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are important players in laryngeal squamous cell carcinoma (LSCC). However, the function of the long noncoding RNA small nucleolar RNA host gene 20 (SNHG20) in LSCC is hardly known. We therefore analyzed the role of this lncRNA in LSCC. Our data showed that SNHG20 was significantly overexpressed in LSCC cell lines and human LSCC tissue. SNHG20 significantly promoted cell proliferation, migration and invasion of LSCC cells. The actions of SNHG20 are likely mediated by miR-342-3p expression, which results in increased expression of MTDH. Finally, the results of in vivo models confirmed that SNHG20 promotes LSCC progression through modulating miR-342-3p and MTDH expression. Taken together, our study demonstrates that SNHG20/miR-342-3p/MTDH axis participates in LSCC progression.
Collapse
Affiliation(s)
- Zuozhong Xie
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, 410013, China
| | - Hong Xiang
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, 410013, China
| | - Jingkun Li
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, 410013, China
| | - Xiaowei Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, 410013, China
| | - Wei Li
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, 410013, China
| | - Guolin Tan
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, 410013, China
| |
Collapse
|
9
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Taheri M, Salimi A. A review on the role of PRNCR1 in human disorders with an especial focus on cancer. Pathol Res Pract 2022; 237:154026. [PMID: 35849867 DOI: 10.1016/j.prp.2022.154026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
Prostate Cancer Associated Non-Coding RNA 1 (PRNCR1) is a long non-coding RNA (lncRNA) which is transcribed from chromosome 8, plus strand. This lncRNA has been reported to be an oncogenic transcript participating in the pathogenesis of several kinds of cancers. Some single nucleotide polymorphisms within this lncRNA affect cancer risk. Moreover, few studies have revealed its possible roles in some non-neoplastic conditions, such as cisplatin-induced acute kidney injury, osteolysis after hip replacement, preeclampsia and pulmonary disorders. In the present narrative review, we explain diverse roles of PRNCR1 in human disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Aria Baniahmad
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran; Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Alireza Salimi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
10
|
Entezari M, Ghanbarirad M, Taheriazam A, Sadrkhanloo M, Zabolian A, Goharrizi MASB, Hushmandi K, Aref AR, Ashrafizadeh M, Zarrabi A, Nabavi N, Rabiee N, Hashemi M, Samarghandian S. Long non-coding RNAs and exosomal lncRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling. Biomed Pharmacother 2022; 150:112963. [PMID: 35468579 DOI: 10.1016/j.biopha.2022.112963] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Among the different kinds of tumors threatening human life, lung cancer is one that is commonly observed in both males and females. The aggressive behavior of lung cancer and interactions occurring in tumor microenvironment enhances the malignancy of this tumor. The lung tumor cells have demonstrated capacity in developing chemo- and radio-resistance. LncRNAs are a category of non-coding RNAs that do not encode proteins, but their aberrant expression is responsible for tumor development, especially lung cancer. In the present review, we focus on both lncRNAs and exosomal lncRNAs in lung cancer, and their ability in regulating proliferation and metastasis. Cell cycle progression and molecular mechanisms related to lung cancer metastasis such as EMT and MMPs are regulated by lncRNAs. LncRNAs interact with miRNAs, STAT, Wnt, EZH2, PTEN and PI3K/Akt signaling pathways to affect progression of lung cancer cells. LncRNAs demonstrate both tumor-suppressor and tumor-promoting functions in lung cancer. They can be considered as biomarkers in lung cancer and especially exosomal lncRNAs present in body fluids are potential tools for minimally invasive diagnosis. Furthermore, we discuss regulation of lncRNAs by anti-cancer drugs and genetic tools as well as the role of these factors in therapy response of lung cancer cells.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Ghanbarirad
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada V6H3Z6
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
11
|
Han F, Huang D, Meng J, Chu J, Wang M, Chen S. miR-126-5p enhances radiosensitivity of lung adenocarcinoma cells by inhibiting EZH2 via the KLF2/BIRC axis. J Cell Mol Med 2022; 26:2529-2542. [PMID: 35322532 PMCID: PMC9077299 DOI: 10.1111/jcmm.17135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/21/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Radiotherapy is a common method for the treatment of lung adenocarcinoma, but it often fails due to the relative non‐susceptibility of lung adenocarcinoma cells to radiation. We aimed to discuss the related mechanisms by which miR‐126‐5p might mediate radiosensitivity of lung adenocarcinoma cells. The binding affinity between miR‐126‐5p and EZH2 and between KLF2 and BIRC5 was identified using multiple assays. A549 and H1650 cells treated with X‐ray were transfected with miR‐126‐5p mimic/inhibitor, oe‐EZH2, or si‐KLF2 to detect cell biological functions and radiosensitivity. Finally, lung adenocarcinoma nude mouse models were established. miR‐126‐5p and KLF2 were poorly expressed, while EZH2 and BIRC5 were upregulated in lung adenocarcinoma tissues and cells. miR‐126‐5p targeted EZH2 to promote the KLF2 expression so as to inhibit BIRC5 activation. Both in vitro and in vivo experiments verified that elevated miR‐126‐5p inhibited cell migration and promoted apoptosis to enhance the sensitivity of lung adenocarcinoma cells to radiotherapy via the EZH2/KLF2/BIRC5 axis. Collectively, miR‐126‐5p downregulated EZH2 to facilitate the sensitivity of lung adenocarcinoma cells to radiotherapy via KLF2/BIRC5.
Collapse
Affiliation(s)
- Fushi Han
- Department of Nuclear Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongdong Huang
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqian Meng
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiapeng Chu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meng Wang
- Department of Radiotherapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuzhen Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Zhang S, Wang X. The association of PRNCR1 rs1456315 polymorphism with the risk of colorectal cancer. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 41:77-84. [PMID: 34844511 DOI: 10.1080/15257770.2021.2008432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
A recent meta-analysis found a link between the PRNCR1 rs1456315 polymorphism and cancer risk. In the current study, we further investigated the association of this polymorphism with the risk and clinical stage of colorectal cancer (CRC). A total of 416 CRC patients and 416 healthy individuals were genotyped by Sanger sequencing. Logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Furthermore, a pooled analysis with 872 CRC cases and 1141 controls was performed by Stata 12.0 software. In both the case-control study and the pooled analysis, there was no significant link between the rs1456315 polymorphism and CRC risk. However, there was a significant link between the rs1456315 polymorphism and the clinical stage of CRC. CRC patients carrying the rs1456315 G allele were more likely to have a high-stage tumor. Further bioinformatics analysis showed that the rs1456315 polymorphism could influence the binding of miRNA to PRNCR1. In conclusion, the findings suggest that the rs1456315 polymorphism is linked to CRC clinical stage and might be used as a biomarker to predict CRC progression.
Collapse
Affiliation(s)
- Shulong Zhang
- Department of General Surgery, Xuhui District Central Hospital of Shanghai, Shanghai, China
| | - Xiaoting Wang
- Physical Examination Centre, Xuhui District Central Hospital of Shanghai, Shanghai, China
| |
Collapse
|
13
|
Chen Y, Huang S, Guo R, Chen D. Metadherin-mediated mechanisms in human malignancies. Biomark Med 2021; 15:1769-1783. [PMID: 34783585 DOI: 10.2217/bmm-2021-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metadherin (MTDH) has been recognized as a novel protein that is critical for the progression of multiple types of human malignancies. Studies have reported that MTDH enhances the metastatic potential of cancer cells by regulating multiple signaling pathways. miRNAs and various tumor-related proteins have been shown to interact with MTDH, making it a potential therapeutic target as well as a biomarker in human malignancies. MTDH plays a critical role in inflammation, angiogenesis, hypoxia, epithelial-mesenchymal transition and autophagy. In this review, we present the function and mechanisms of MTDH for cancer initiation and progression.
Collapse
Affiliation(s)
- Yuyuan Chen
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Sheng Huang
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Rong Guo
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Dedian Chen
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| |
Collapse
|
14
|
Bardhan A, Banerjee A, Basu K, Pal DK, Ghosh A. PRNCR1: a long non-coding RNA with a pivotal oncogenic role in cancer. Hum Genet 2021; 141:15-29. [PMID: 34727260 PMCID: PMC8561087 DOI: 10.1007/s00439-021-02396-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been gaining importance in the field of cancer research in recent years. PRNCR1 (prostate cancer-associated non-coding RNA1) is a 12.7 kb, intron-less lncRNA found to play an oncogenic role in malignancy of diverse organs including prostate, breast, lung, oral cavity, colon and rectum. Single-nucleotide polymorphisms (SNPs) of PRNCR1 locus have been found to be associated with cancer susceptibility in different populations. In this review, an attempt has been made for the first time to summarize all sorts of available data on PRNCR1 to date from relevant databases (GeneCard, LncExpDB, Ensembl genome browser, and PubMed). As functional roles of PRNCR1, miRNA (microRNA) sponging was mostly highlighted in the pathogenesis of different cancer; in addition, an association of the lncRNA with chromatin-modifying complex to enhance androgen receptor-mediated gene transcription was reported in prostate cancer. Diagnostic and prognostic importance of PRNCR1 was found in some malignancies suggesting potency of the lncRNA to serve as a clinical biomarker. For PRNCR1 SNPs, although cancer susceptibility of the risk alleles/genotypes was reported in different populations, majorities of the findings were not replicated and underlying molecular mechanisms remained unexplored. Therapeutic implication of PRNCR1 was not studied well and future research may come up in this direction for intervening novel strategies to fight against cancer.
Collapse
Affiliation(s)
- Abhishek Bardhan
- Genetics of Non-Communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Anwesha Banerjee
- Genetics of Non-Communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Keya Basu
- Department of Pathology, IPGME&R, Kolkata, West Bengal, India
| | | | - Amlan Ghosh
- Genetics of Non-Communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
15
|
Ghafouri-Fard S, Aghabalazade A, Shoorei H, Majidpoor J, Taheri M, Mokhtari M. The Impact of lncRNAs and miRNAs on Apoptosis in Lung Cancer. Front Oncol 2021; 11:714795. [PMID: 34367998 PMCID: PMC8335161 DOI: 10.3389/fonc.2021.714795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a coordinated cellular process that occurs in several physiological situations. Dysregulation of apoptosis has been documented in numerous pathological situations, particularly cancer. Non-coding RNAs regulate apoptosis via different mechanisms. Lung cancer is among neoplastic conditions in which the role of non-coding RNAs in the regulation of apoptosis has been investigated. Non-coding RNAs that regulate apoptosis in lung cancer have functional interactions with PI3K/Akt, PTEN, GSK-3β, NF-κB, Bcl-2, Bax, p53, mTOR and other important cancer-related pathways. Globally, over-expression of apoptosis-blocking non-coding RNAs has been associated with poor prognosis of patients, while apoptosis-promoting ones have the opposite effect. In the current paper, we describe the impact of lncRNAs and miRNAs on cell apoptosis in lung cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Aghabalazade
- Department of Pharmacology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomical Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Mokhtari
- Critical Care Quality improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Ashrafizadeh M, Shahinozzaman M, Orouei S, Zarrin V, Hushmandi K, Hashemi F, Kumar A, Samarghandian S, Najafi M, Zarrabi A. Crosstalk of long non-coding RNAs and EMT: Searching the missing pieces of an incomplete puzzle for lung cancer therapy. Curr Cancer Drug Targets 2021; 21:640-665. [PMID: 33535952 DOI: 10.2174/1568009621666210203110305] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is considered to be the first place among the cancer-related deaths worldwide and demands novel strategies in the treatment of this life-threatening disorder. The aim of this review is to explore regulation of epithelial-to-mesenchymal transition (EMT) by long non-coding RNAs (lncRNAs) in lung cancer. INTRODUCTION LncRNAs can be considered as potential factors for targeting in cancer therapy, since they regulate a bunch of biological processes, e.g. cell proliferation, differentiation and apoptosis. The abnormal expression of lncRNAs occurs in different cancer cells. On the other hand, epithelial-to-mesenchymal transition (EMT) is a critical mechanism participating in migration and metastasis of cancer cells. METHOD Different databases including Googlescholar, Pubmed and Sciencedirect were used for collecting articles using keywords such as "LncRNA", "EMT", and "Lung cancer". RESULT There are tumor-suppressing lncRNAs that can suppress EMT and metastasis of lung cancer cells. Expression of such lncRNAs undergoes down-regulation in lung cancer progression and restoring their expression is of importance in suppressing lung cancer migration. There are tumor-promoting lncRNAs triggering EMT in lung cancer and enhancing their migration. CONCLUSION LncRNAs are potential regulators of EMT in lung cancer, and targeting them, both pharmacologically and genetically, can be of importance in controlling migration of lung cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742. United States
| | - Sima Orouei
- Department of Genetics Science, Tehran Medical Sciences Branch, Islamic Azad University, Tehran. Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran. Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran. Iran
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541. Korea
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanashah University of Medical Sciences, Kermanshah 6715847141. Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| |
Collapse
|
17
|
Wilson C, Kanhere A. 8q24.21 Locus: A Paradigm to Link Non-Coding RNAs, Genome Polymorphisms and Cancer. Int J Mol Sci 2021; 22:1094. [PMID: 33499210 PMCID: PMC7865353 DOI: 10.3390/ijms22031094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
The majority of the human genome is comprised of non-protein-coding genes, but the relevance of non-coding RNAs in complex diseases has yet to be fully elucidated. One class of non-coding RNAs is long non-coding RNAs or lncRNAs, many of which have been identified to play a range of roles in transcription and translation. While the clinical importance of the majority of lncRNAs have yet to be identified, it is puzzling that a large number of disease-associated genetic variations are seen in lncRNA genes. The 8q24.21 locus is rich in lncRNAs and very few protein-coding genes are located in this region. Interestingly, the 8q24.21 region is also a hot spot for genetic variants associated with an increased risk of cancer. Research focusing on the lncRNAs in this area of the genome has indicated clinical relevance of lncRNAs in different cancers. In this review, we summarise the lncRNAs in the 8q24.21 region with respect to their role in cancer and discuss the potential impact of cancer-associated genetic polymorphisms on the function of lncRNAs in initiation and progression of cancer.
Collapse
Affiliation(s)
| | - Aditi Kanhere
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK;
| |
Collapse
|
18
|
Cai C, Zeng Q, Zhou G, Mu X. Identification of novel transcription factor-microRNA-mRNA co-regulatory networks in pulmonary large-cell neuroendocrine carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:133. [PMID: 33569435 PMCID: PMC7867924 DOI: 10.21037/atm-20-7759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Large cell neuroendocrine carcinoma (LCNEC) of the lung is a rare neuroendocrine neoplasm. Previous studies have shown that microRNAs (miRNAs) are widely involved in tumor regulation through targeting critical genes. However, it is unclear which miRNAs play vital roles in the pathogenesis of LCNEC, and how they interact with transcription factors (TFs) to regulate cancer-related genes. Methods To determine the novel TF-miRNA-target gene feed-forward loop (FFL) model of LCNEC, we integrated multi-omics data from Gene Expression Omnibus (GEO), Transcriptional Regulatory Relationships Unraveled by Sentence-Based Text Mining (TRRUST), Transcriptional Regulatory Element Database (TRED), and The experimentally validated microRNA-target interactions database (miRTarBase database). First, expression profile datasets for mRNAs (GSE1037) and miRNAs (GSE19945) were downloaded from the GEO database. Overlapping differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were identified through integrative analysis. The target genes of the FFL were obtained from the miRTarBase database, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed on the target genes. Then, we screened for key miRNAs in the FFL and performed gene regulatory network analysis based on key miRNAs. Finally, the TF-miRNA-target gene FFLs were constructed by the hypergeometric test. Results A total of 343 DEGs and 60 DEMs were identified in LCNEC tissues compared to normal tissues, including 210 down-regulated and 133 up-regulated genes, and 29 down-regulated and 31 up-regulated miRNAs. Finally, the regulatory network of TF-miRNA-target gene was established. The key regulatory network modules included ETS1-miR195-CD36, TAOK1-miR7-1-3P-GRIA1, E2F3-miR195-CD36, and TEAD1-miR30A-CTHRC1. Conclusions We constructed the TF-miRNA-target gene regulatory network, which is helpful for understanding the complex LCNEC regulatory mechanisms.
Collapse
Affiliation(s)
- Cunliang Cai
- Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qianli Zeng
- The South China Center for Innovative Pharmaceuticals, Guangzhou, China
| | - Guiliang Zhou
- The South China Center for Innovative Pharmaceuticals, Guangzhou, China
| | - Xiangdong Mu
- Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Jiao Z, Yu A, He X, Xuan Y, Zhang H, Wang G, Shi M, Wang T. Bioinformatics analysis to determine the prognostic value and prospective pathway signaling of miR-126 in non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1639. [PMID: 33490151 PMCID: PMC7812220 DOI: 10.21037/atm-20-7520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background MicroRNAs (miRNAs) have been demonstrated to play crucial roles in the initiation and development of non-small cell lung cancer (NSCLC). However, further investigation of the specific role of miR-126 in NSCLC is still required. Methods An analysis of miR-126 expression in NSCLC was carried out using the Gene Expression Omnibus (GEO) database, and a literature review was also performed. The differentially expressed genes (DEGs) in three mRNA datasets, GSE18842, GSE19804, and GSE101929, from GEO were identified. Following the prediction of hsa-miR-126-5p target genes by TargetScan, the overlap of miR-126 target genes with DEGs in NSCLC was examined. After that, Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed. Finally, an analysis to identify the impact of hub genes on the prognosis of NSCLC was carried out on the basis of a protein-protein interaction (PPI) network constructed using STRING and Cytoscape. Results The data in the literature review revealed a trend that miR126 was downregulated in NSCLC. The number of both NSCLC-related and miR-126-related DEGs was 187. Dozens of DEGs were significantly enriched in biological regulation, cell membrane binding, and signal receptor binding. In the PPI network analysis, 3 of 10 identified hub genes, namely NCAPG, MELK, and KIAA0101, were obviously related to poor prognosis in NSCLC; the survival rate was low among patients with high expression levels of these genes. Furthermore, through network analysis, TPX2, HMMR, and ANLN were identified as recessive miR-126-related genes that may be involved in NSCLC. Conclusions MiR-126 plays an essential role in the biological processes of NSCLC through binding to target genes and influences the prognosis of patients with the disease.
Collapse
Affiliation(s)
- Zichen Jiao
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Ao Yu
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaofeng He
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Yulong Xuan
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - He Zhang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guojun Wang
- Department of Thoracic Surgery, Jintan People's Hospital, Changzhou, China
| | - Minke Shi
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Yu Y, Sun H, Zhu L, Ji L, Liu H. Downregulating lncRNA PRNCR1 ameliorates LPS-induced pulmonary vascular endothelial cell injury by modulating miR-330-5p/TLR4 axis. J Biochem Mol Toxicol 2020; 35:e22644. [PMID: 33049095 DOI: 10.1002/jbt.22644] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/08/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Pulmonary vascular endothelial cell (PVEC) injury following acute lung injury or acute respiratory distress syndrome seriously affects disease development. Recently, accumulating evidence has suggested that long noncoding RNA (lncRNA) exerts significant effects in vascular endothelial cell injury. However, PRNCR1, a novel lncRNA, remains scarcely understood in terms of its functions in PVEC injury. Both in vivo and in vitro models of PVEC injury were constructed by lipopolysaccharide (LPS) administration. The relative expressions of PRNCR1, miR-330-5p, and TLR4 were detected by quantitative reverse transcription-polymerase chain reaction, Western blot, and immunohistochemistry. Besides, gain and loss assays of PRNCR1/miR-330-5p were conducted to verify their effects on LPS-induced PVEC injury. Cell Counting Kit-8 assay used to measure cell viability and flow cytometry was used to detect apoptosis. Besides, the protein levels of caspase 3, nuclear factor-κB (NF-κB), and inflammatory cytokines (including tumor necrosis factor-α, interleukin-1β [IL-1β], and IL-6) were evaluated via Western blot and enzyme-linked immunosorbent assay. Moreover, a dual-luciferase activity experiment and RNA immunoprecipitation were applied to confirm the targeting relationship between PRNCR1 and miR-330-5p, miR-330-5p, and TLR4. PRNCR1 and TLR4 levels were significantly upregulated in LPS-treated PVEC, both in vivo and in vitro, while miR-330-5p were downregulated. Inhibiting PRNCR1 or overexpressing miR-330-5p markedly attenuated LPS-induced PVEC injury, expressions of TLR4, NF-κB, and inflammatory cytokines. Mechanistically, PRNCR1 functioned as a competitive endogenous RNA by sponging miR-330-5p and then promoting TLR4 expression. PRNCR1 was upregulated in LPS-induced PVEC and aggravated its injury via modulating the miR-330-5p/TLR4 axis.
Collapse
Affiliation(s)
- Yingqing Yu
- Emergency Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongzhi Sun
- Department of Intensive Medicine, Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lei Zhu
- Emergency Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Lianfeng Ji
- Emergency Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Haibo Liu
- Emergency Department, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
21
|
Identification and characterization of miRNA expression profiles across five tissues in giant panda. Gene 2020; 769:145206. [PMID: 33059030 DOI: 10.1016/j.gene.2020.145206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
microRNA (miRNA) is a small endogenous noncoding RNA molecule that plays multiple roles in regulating most biological processes. However, for China's national treasure giant panda, a world-famous rare and protected species, reports of its miRNA have been found only in blood and breast milk. To explore the miRNA expression differences between different giant panda tissues, here, we generated the miRNA profiles of five tissues (heart, liver, spleen, lung, and kidney) from four giant pandas with Illumina Hiseq 2500 platform, and filtered the differentially expressed miRNAs (DEmiRs) in each tissue, predicted the target genes of miRNA from each tissue based on the DEmiRs. Then, the GO and KEGG enrichment analysis were conducted using the target genes predicted from DEmiRs in each tissue. The RNA-seq generated an average of 0.718 GB base per sample. A total of 1,256 known miRNAs and 12 novel miRNAs were identified, and there were 215, 131, 185, 83, and 126 tissue-specific DEmiRs filtered in the heart, liver, spleen, lung, and kidney, respectively, including miR-1b-5p, miR-122-5p, miR-143, miR-126-5p, and miR-10b-5p, respectively. The predicted target genes, including MYL2, LRP5, MIF, CFD, and PEBP1 in the heart, liver, spleen, lung, and kidney, respectively, were closely associated with tissue-specific biological functions. The enrichment analysis results of target genes showed tissue-specific characteristics, such as the significantly enriched GO terms extracellular matrix in the heart and insulin-like growth factor binding in the liver. The miRNA profiles of the heart, liver, spleen, lung, and kidney of giant panda have been reported in this study, it reveals the miRNA expression differences between different tissues of the giant panda, and provides valuable genetic resources for the further related molecular genetic research of the rare and protected species giant panda and other mammals.
Collapse
|
22
|
Ginn L, Shi L, La Montagna M, Garofalo M. LncRNAs in Non-Small-Cell Lung Cancer. Noncoding RNA 2020; 6:E25. [PMID: 32629922 PMCID: PMC7549371 DOI: 10.3390/ncrna6030025] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is associated with a high mortality, with around 1.8 million deaths worldwide in 2018. Non-small-cell lung cancer (NSCLC) accounts for around 85% of cases and, despite improvement in the management of NSCLC, most patients are diagnosed at advanced stage and the five-year survival remains around 15%. This highlights a need to identify novel ways to treat the disease to reduce the burden of NSCLC. Long non-coding RNAs (lncRNAs) are non-coding RNA molecules longer than 200 nucleotides in length which play important roles in gene expression and signaling pathways. Recently, lncRNAs were implicated in cancer, where their expression is dysregulated resulting in aberrant functions. LncRNAs were shown to function as both tumor suppressors and oncogenes in a variety of cancer types. Although there are a few well characterized lncRNAs in NSCLC, many lncRNAs remain un-characterized and their mechanisms of action largely unknown. LncRNAs have success as therapies in neurodegenerative diseases, and having a detailed understanding of their function in NSCLC may guide novel therapeutic approaches and strategies. This review discusses the role of lncRNAs in NSCLC tumorigenesis, highlighting their mechanisms of action and their clinical potential.
Collapse
Affiliation(s)
| | | | | | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Manchester SK10 4TG, UK; (L.G.); (L.S.); (M.L.M.)
| |
Collapse
|
23
|
Jiang S, Wang R, Zhang X, Wu F, Li S, Yuan Y. Combination treatment of gemcitabine and sorafenib exerts a synergistic inhibitory effect on non-small cell lung cancer in vitro and in vivo via the epithelial-to-mesenchymal transition process. Oncol Lett 2020; 20:346-356. [PMID: 32537024 PMCID: PMC7291674 DOI: 10.3892/ol.2020.11536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 03/02/2020] [Indexed: 01/13/2023] Open
Abstract
Standard chemotherapy is commonly used in clinical practice for the treatment of non-small cell lung cancer (NSCLC). However, its therapeutic efficacy remains low. Combination therapy for cancer treatment has attracted attention in recent years. The present study aimed to investigate the antitumor effect of the combination treatment with gemcitabine and sorafenib on NSCLC in vitro and in vivo, and to determine its underlying molecular mechanisms. The anti-NSCLC effects of combination therapy were analyzed by flow cytometry analysis, MTT, western blotting, reverse transcription-quantitative PCR, wound healing and Transwell invasion assays. A549 cells subjected to combination treatment with gemcitabine and sorafenib demonstrated a more irregular cellular morphology and lower cell viability compared with the monotherapy groups. Combination of gemcitabine and sorafenib significantly induced cell cycle arrest and apoptosis in A549 cells. Additionally, combination therapy was demonstrated to restrain the migration and invasion of tumor cells by suppressing epithelial-to-mesenchymal transition (EMT) of A549 cells. In vivo analyses confirmed that co-treatment with gemcitabine and sorafenib decreased NSCLC tumor growth and tumor weight in nude mice. Taken together, the results of the present study suggested that combination treatment with gemcitabine and sorafenib exerted a synergistic inhibitory effect on NSCLC in vitro and in vivo via the EMT process.
Collapse
Affiliation(s)
- Shanshan Jiang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Rong Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Xuan Zhang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Feihua Wu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Shengnan Li
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|