1
|
Teng F, Wei H, Dong X. An immune related signature inhibits the occurrence and development of serous ovarian cancer by affecting the abundance of dendritic cells. Discov Oncol 2023; 14:101. [PMID: 37318692 DOI: 10.1007/s12672-023-00717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Serous ovarian cancer is one of the major causes of cancer related death among women worldwide. The advanced diagnosis worsens the prognosis of patients with serous ovarian cancer. The immune system has an important impact on the progression of ovarian cancer. Herein, we aimed to establish an immune related prognostic signature to assist in the early diagnosis, treatment, and prognostic evaluation of patients with serous ovarian cancer. Multiple public data sets and immune related genes were obtained from various online public databases, and immune related prognostic signatures were developed through differential expression analysis, univariate Cox proportional hazard regression analysis, and the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression model. The nomogram model, Kaplan-Meier survival curve analysis, receiver operating characteristic (ROC) curve analysis, and decision curve analysis showed that this signature had a good prediction potential. In conclusion, an immune related signature with good prediction efficiency was established through systematic bioinformatics analysis, which may play a tumor inhibition role by affecting the abundance of activated dendritic cells.
Collapse
Affiliation(s)
- Fei Teng
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Wei
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqiu Dong
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
De Palma FDE, Carbonnier V, Salvatore F, Kroemer G, Pol JG, Maiuri MC. Systematic Investigation of the Diagnostic and Prognostic Impact of LINC01087 in Human Cancers. Cancers (Basel) 2022; 14:cancers14235980. [PMID: 36497462 PMCID: PMC9738797 DOI: 10.3390/cancers14235980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Long non-coding RNAs may constitute epigenetic biomarkers for the diagnosis, prognosis, and therapeutic response of a variety of tumors. In this context, we aimed at assessing the diagnostic and prognostic value of the recently described long intergenic non-coding RNA 01087 (LINC01087) in human cancers. (2) Methods: We studied the expression of LINC01087 across 30 oncological indications by interrogating public resources. Data extracted from the TCGA and GTEx databases were exploited to plot receiver operating characteristic curves (ROC) and determine the diagnostic performance of LINC01087. Survival data from TCGA and KM-Plotter directories allowed us to graph Kaplan-Meier curves and evaluate the prognostic value of LINC01087. To investigate the function of LINC01087, gene ontology (GO) annotation and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed. Furthermore, interactions between LINC01087 and both miRNA and mRNA were studied by means of bioinformatics tools. (3) Results: LINC01087 was significantly deregulated in 7 out of 30 cancers, showing a predominant upregulation. Notably, it was overexpressed in breast (BC), esophageal (ESCA), and ovarian (OV) cancers, as well as lung squamous cell carcinoma (LUSC), stomach adenocarcinoma (STAD), and uterine carcinosarcoma (UCS). By contrast, LINC01087 displayed downregulation in testicular germ cell tumors (TGCT). ROC curve analyses identified LINC01087 as a potential diagnostic indicator in BC, ESCA, OV, STAD, and TGCT. Moreover, high and low expression of LINC01087 predicted a favorable prognosis in BC and papillary cell carcinoma, respectively. In silico analyses indicated that deregulation of LINC01087 in cancer was associated with a modulation of genes related to ion channel, transporter, and peptide receptor activity. (4) Conclusions: the quantification of an altered abundance of LINC01087 in tissue specimens might be clinically useful for the diagnosis and prognosis of some hormone-related tumors, including BC, OV, and TGCT, as well as other cancer types such as ESCA and STAD. Moreover, our study revealed the potential of LINC01087 (and perhaps other lncRNAs) to regulate neuroactive molecules in cancer.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Vincent Carbonnier
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Centro Interuniversitario per Malattie Multigeniche e Multifattoriali e Loro Modelli Animali (Federico II, 80131, Napoli, Tor Vergata, Rome and “G. D’Annunzio”, Chieti-Pescara), 80131 Napoli, Italy
| | - Guido Kroemer
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, 75004 Paris, France
| | - Jonathan G. Pol
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| | - Maria Chiara Maiuri
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| |
Collapse
|
3
|
Integrated Analysis of Tumor Mutation Burden and Immune Infiltrates in Hepatocellular Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12081918. [PMID: 36010268 PMCID: PMC9406847 DOI: 10.3390/diagnostics12081918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor mutation burdens (TMBs) act as an indicator of immunotherapeutic responsiveness in various tumors. However, the relationship between TMBs and immune cell infiltrates in hepatocellular carcinoma (HCC) is still obscure. The present study aimed to explore the potential diagnostic markers of TMBs for HCC and analyze the role of immune cell infiltration in this pathology. We used OA datasets from The Cancer Genome Atlas database. First, the “maftools” package was used to screen the highest mutation frequency in all samples. R software was used to identify differentially expressed genes (DEGs) according to mutation frequency and perform functional correlation analysis. Then, the gene ontology (GO) enrichment analysis was performed with “clusterProfiler”, “enrichplot”, and “ggplot2” packages. Finally, the correlations between diagnostic markers and infiltrating immune cells were analyzed, and CIBERSORT was used to evaluate the infiltration of immune cells in HCC tissues. As a result, we identified a total of 359 DEGs in this study. These DEGs may affect HCC prognosis by regulating fatty acid metabolism, hypoxia, and the P53 pathway. The top 15 genes were selected as the hub genes through PPI network analysis. SRSF1, SNRPA1, and SRSF3 showed strong similarities in biological effects, NCBP2 was demonstrated as a diagnostic marker of HCC, and high NCBP2 expression was significantly correlated with poor over survival (OS) in HCC. In addition, NCBP2 expression was correlated with the infiltration of B cells (r = 0.364, p = 3.30 × 10−12), CD8+ T cells (r = 0.295, p = 2.71 × 10−8), CD4+ T cells, (r = 0.484, p = 1.37 × 10−21), macrophages (r = 0.551, p = 1.97 × 10−28), neutrophils (r = 0.457, p = 3.26 × 10−19), and dendritic cells (r = 0.453, p = 1.97 × 10−18). Immune cell infiltration analysis revealed that the degree of central memory T-cell (Tcm) infiltration may be correlated with the HCC process. In conclusion, NCBP2 can be used as diagnostic markers of HCC, and immune cell infiltration plays an important role in the occurrence and progression of HCC.
Collapse
|
4
|
Jiang A, Meng J, Gong W, Zhang Z, Gan X, Wang J, Wu Z, Liu B, Qu L, Wang L. Elevated SNRPA1, as a Promising Predictor Reflecting Severe Clinical Outcome via Effecting Tumor Immunity for ccRCC, Is Related to Cell Invasion, Metastasis, and Sunitinib Sensitivity. Front Immunol 2022; 13:842069. [PMID: 35281041 PMCID: PMC8904888 DOI: 10.3389/fimmu.2022.842069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal carcinoma and is associated with poor prognosis and notorious for its immune dysfunction characteristic. SNRPA1 is a spliceosome component responsible for processing pre-mRNA into mRNA, while the biological effect of SNRPA1 in ccRCC remains elusive. The aim of this study was to decipher the effect of SNRPA1 on clinical effect and tumor immunity for ccRCC patients. Multi-databases were collected to evaluate the different expression, prognostic value, DNA methylation, tumor immune microenvironment, and drug sensitivity of SNRPA1 on ccRCC. IHC was utilized to validate the expression and prognostic value of SNRPA1 in ccRCC patients from the SMMU cohort. The knockout expression of SNRPA by sgRNA plasmid inhibited the cell proliferation, migration, and metastasis ability and significantly increased the sensitivity of sunitinib treatment. In addition, we explored the role of SNRPA1 in pan-cancer level. The results indicated that SNRPA1 was differentially expressed in most cancer types. SNRPA1 may significantly influence the prognosis of multiple cancer types, especially in ccRCC patients. Notably, SNRPA1 was significantly correlated with immune cell infiltration and immune checkpoint inhibitory genes. In addition, the aggressive and immune inhibitory effects shown in SNRPA1 overexpression and the effect of SNRPA1 on ccRCC cell line invasion, metastasis, and drug sensitivity in vitro were observed. Moreover, SNRPA1 was related to Myc, MTORC, G2M, E2F, and DNA repair pathways in various cancer types. In all, SNRPA1 may prove to be a new biomarker for prognostic prediction, effect tumor immunity, and drug susceptibility in ccRCC.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Wenliang Gong
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhonghua Zhang
- Department of Clinical Pharmacy, No. 988 Hospital of Joint Logistic Support Force, Zhengzhou, China
| | - Xinxin Gan
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jie Wang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhenjie Wu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Bing Liu
- Department of Urology, The Third Affiliated Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
5
|
Identification of a Novel Tumor Microenvironment Prognostic Signature for Advanced-Stage Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13133343. [PMID: 34283076 PMCID: PMC8268985 DOI: 10.3390/cancers13133343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The expression of tumor microenvironment-related genes is known to be correlated with ovarian cancer patients’ prognosis. Immunotherapeutic targets are in part located in this complex cluster of cells and soluble factors. In our study, we constructed a prognostic 11-gene signature for advanced serous ovarian cancer from tumor microenvironment-related genes through lasso regression. The established risk score can quantify the prognosis of ovarian cancer patients more accurately and is able to predict the putative biological response of cancer samples to a programmed death ligand 1 blocking immunotherapy. This might empower the role of immunotherapy in ovarian cancer through its usage in future study protocols. Abstract (1) Background: The tumor microenvironment is involved in the growth and proliferation of malignant tumors and in the process of resistance towards systemic and targeted therapies. A correlation between the gene expression profile of the tumor microenvironment and the prognosis of ovarian cancer patients is already known. (2) Methods: Based on data from The Cancer Genome Atlas (379 RNA sequencing samples), we constructed a prognostic 11-gene signature (SNRPA1, CCL19, CXCL11, CDC5L, APCDD1, LPAR2, PI3, PLEKHF1, CCDC80, CPXM1 and CTAG2) for Fédération Internationale de Gynécologie et d’Obstétrique stage III and IV serous ovarian cancer through lasso regression. (3) Results: The established risk score was able to predict the 1-, 3- and 5-year prognoses more accurately than previously known models. (4) Conclusions: We were able to confirm the predictive power of this model when we applied it to cervical and urothelial cancer, supporting its pan-cancer usability. We found that immune checkpoint genes correlate negatively with a higher risk score. Based on this information, we used our risk score to predict the biological response of cancer samples to an anti-programmed death ligand 1 immunotherapy, which could be useful for future clinical studies on immunotherapy in ovarian cancer.
Collapse
|
6
|
Yuan P, Ling L, Gao X, Sun T, Miao J, Yuan X, Liu J, Wang Z, Liu B. Identification of RNA-binding protein SNRPA1 for prognosis in prostate cancer. Aging (Albany NY) 2021; 13:2895-2911. [PMID: 33460399 PMCID: PMC7880319 DOI: 10.18632/aging.202387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Prostate cancer is one of the deadliest cancers in men. RNA-binding proteins play a critical role in human cancers; however, whether they have a significant effect on the prognosis of prostate cancer has yet to be elucidated. In the present study, we performed a comprehensive analysis of RNA sequencing and clinical data from the Cancer Genome Atlas dataset and obtained differentially expressed RNA-binding proteins between prostate cancer and benign tissues. We constructed a protein-protein interaction network and Cox regression analyses were conducted to identify prognostic hub RNA-binding proteins. SNRPA1 was associated with the highest risk of poor prognosis and was therefore selected for further analysis. SNRPA1 expression was positively correlated with Gleason score and pathological TNM stage in prostate cancer patients. Furthermore, the expression profile of SNRPA1 was validated using the Oncomine, Human Protein Atlas, and Cancer Cell Line Encyclopedia databases. Meanwhile, the prognostic profile of SNRPA1 was successfully verified in GSE70769. Additionally, the results of molecular experiments revealed the proliferative role of SNRPA1 in prostate cancer cells. In summary, our findings evidenced a relationship between RNA-binding proteins and prostate cancer and indicated the prognostic significance of SNRPA1 in prostate cancer.
Collapse
Affiliation(s)
- Penghui Yuan
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Le Ling
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xintao Gao
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Taotao Sun
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jianping Miao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jihong Liu
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhihua Wang
- Department of Urology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|