1
|
Bai N, Ying T, Li D, Liu A. Relationship between albumin-corrected anion gap and non-alcoholic fatty liver disease: a cross-sectional analysis of NHANES 2017-2018. Front Med (Lausanne) 2025; 12:1518540. [PMID: 40144875 PMCID: PMC11938069 DOI: 10.3389/fmed.2025.1518540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Objectives The objective of this study was to examine the correlation between the albumin-corrected anion gap (ACAG) and non-alcoholic fatty liver disease (NAFLD) using data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018. Methods A cross-sectional analysis was conducted, comprising 4,379 participants, who were stratified into two groups: those with NAFLD and those without NAFLD. The baseline characteristics were compared using the most appropriate statistical tests. The relationship between ACAG levels and NAFLD was assessed using generalized linear models, with adjustments made for potential confounding factors. The analysis of threshold effects was conducted using piecewise regression. Furthermore, the relationship between ACAG and NAFLD was investigated in different age groups. Results The mean age of participants with non-alcoholic fatty liver disease (NAFLD) was significantly higher than that of non-NAFLD participants (48.88 vs. 43.46 years, p < 0.001). The presence of NAFLD was associated with higher levels of ACAG (18.80 ± 0.24 vs. 18.10 ± 0.19, p < 0.001). In fully adjusted models, each 1-unit increase in ACAG was associated with a significantly increased risk of NAFLD in participants under 60 years old (β: 0.87, 95% CI: 0.05, 1.69, p < 0.05). In younger participants, elevated NAFLD risk was observed in those with higher ACAG quartiles (P for trend <0.05). In contrast, no significant associations were identified in participants aged 60 years and older (P for trend >0.05), suggesting the presence of age-specific differences in the relationship between ACAG and NAFLD. Conclusion The impact of ACAG on NAFLD is significantly correlated, especially in the age group, where elevated levels of ACAG are associated with increased risk of NAFLD in young people. ACAG may be a potential and reliable biomarker for predicting NAFLD risk in clinical assessment, but its implementation should consider the patient's age factor.
Collapse
Affiliation(s)
- Ning Bai
- Department of Gastroenterology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Ting Ying
- Research Institute of Digital and Intelligent Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dejian Li
- Research Institute of Digital and Intelligent Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Aiguo Liu
- Research Institute of Digital and Intelligent Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
2
|
Matboli M, Al-Amodi HS, Hamady S, Ali M, Roushdy MM, Hasanin AH, Aboul-Ela YM, Albadawy R, Gomaa E, Kamel HFM, ELsawi HA, Farid LM, Abouelkhair MB, Elmakromy GM, Fawzy NM. Experimental investigation for nonalcoholic fatty pancreas management using probiotics. Diabetol Metab Syndr 2024; 16:147. [PMID: 38961451 PMCID: PMC11223304 DOI: 10.1186/s13098-024-01378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty pancreatitis (NAFP) presents a pressing challenge within the domain of metabolic disorders, necessitating further exploration to unveil its molecular intricacies and discover effective treatments. Our focus was to delve into the potential therapeutic impact of ZBiotic, a specially engineered strain of probiotic B. subtilis, in managing NAFP by targeting specific genes linked with necroptosis and the TNF signaling pathway, including TNF, ZBP1, HSPA1B, and MAPK3, along with their upstream epigenetic regulator, miR-5192, identified through bioinformatics. METHODS Rats were subjected to either a standard or high-fat, high-sucrose diet (HFHS) for eight weeks. Subsequently, they were divided into groups: NAFP model, and two additional groups receiving daily doses of ZBiotic (0.5 ml and 1 ml/kg), and the original B. subtilis strain group (1 ml/kg) for four weeks, alongside the HFHS diet. RESULTS ZBiotic exhibited remarkable efficacy in modulating gene expression, leading to the downregulation of miR-5192 and its target mRNAs (p < 0.001). Treatment resulted in the reversal of fibrosis, inflammation, and insulin resistance, evidenced by reductions in body weight, serum amylase, and lipase levels (p < 0.001), and decreased percentages of Caspase and Nuclear Factor Kappa-positive cells in pancreatic sections (p < 0.01). Notably, high-dose ZBiotic displayed superior efficacy compared to the original B. subtilis strain, highlighting its potential in mitigating NAFP progression by regulating pivotal pancreatic genes. CONCLUSION ZBiotic holds promise in curbing NAFP advancement, curbing fibrosis and inflammation while alleviating metabolic and pathological irregularities observed in the NAFP animal model. This impact was intricately linked to the modulation of necroptosis/TNF-mediated pathway-related signatures.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical biochemistry and molecular biology department, Faculty of medicine, Ain Shams University, Cairo, 11566, Egypt.
| | - Hiba S Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Shaimaa Hamady
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - Marwa Ali
- Medical biochemistry and molecular biology department, Faculty of medicine, Ain Shams University, Cairo, 11566, Egypt
| | - Marian Ms Roushdy
- Medical biochemistry and molecular biology department, Faculty of medicine, Ain Shams University, Cairo, 11566, Egypt
| | - Amany Helmy Hasanin
- Clinical pharmacology department, Faculty of medicine, Ain Shams University, Cairo, Egypt
| | - Yasmin M Aboul-Ela
- Clinical pharmacology department, Faculty of medicine, Ain Shams University, Cairo, Egypt
| | - Reda Albadawy
- Department of Gastroenterology, Hepatology & Infectious Disease, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Eman Gomaa
- Histology and Cell biology department, Faculty of Medicine, Ain Shams University, Giza, Egypt
| | - Hala F M Kamel
- Medical biochemistry and molecular biology department, Faculty of medicine, Ain Shams University, Cairo, 11566, Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hind A ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr City, Egypt
| | - Laila M Farid
- Pathology department Faculty of Medicine, Ain Shams University, Giza, Egypt
| | | | - Gena M Elmakromy
- Endocrinology & Diabetes mellitus unit, Department of Internal Medicine, Badr University in Cairo, Badr City, Egypt
| | - Nesma Mohamed Fawzy
- Medical biochemistry and molecular biology department, Faculty of medicine, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
3
|
Hong J, Liu J, Zhang Y, Ding L, Ye Q. MiR-3180 inhibits hepatocellular carcinoma growth and metastasis by targeting lipid synthesis and uptake. Cancer Cell Int 2023; 23:66. [PMID: 37041584 PMCID: PMC10091558 DOI: 10.1186/s12935-023-02915-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
PURPOSE Reprogrammed lipid metabolism is a hallmark of cancer that provides energy, materials, and signaling molecules for rapid cancer cell growth. Cancer cells acquire fatty acids primarily through de novo synthesis and uptake. Targeting altered lipid metabolic pathways is a promising anticancer strategy. However, their regulators have not been fully investigated, especially those targeting both synthesis and uptake. METHODS Immunohistochemistry was performed on samples from patients with hepatocellular carcinoma (HCC) to establish the correlation between miR-3180, stearoyl-CoA desaturase-1 (SCD1), and CD36 expression, quantified via qRT-PCR and western blotting. The correlation was analyzed using a luciferase reporter assay. Cell proliferation, migration, and invasion were analyzed using CCK-8, wound healing, and transwell assays, respectively. Oil Red O staining and flow cytometry were used to detect lipids. Triglycerides and cholesterol levels were analyzed using a reagent test kit. CY3-labeled oleic acid transport was analyzed using an oleic acid transport assay. Tumor growth and metastasis were detected in vivo in a xenograft mouse model. RESULTS MiR-3180 suppressed de novo fatty acid synthesis and uptake by targeting the key lipid synthesis enzyme SCD1 and key lipid transporter CD36. MiR-3180 suppressed HCC cell proliferation, migration, and invasion in an SCD1- and CD36-dependent manner in vitro. The mouse model demonstrated that miR-3180 inhibits HCC tumor growth and metastasis by inhibiting SCD1- and CD36-mediated de novo fatty acid synthesis and uptake. MiR-3180 expression was downregulated in HCC tissues and negatively correlated with SCD1 and CD36 levels. Patients with high miR-3180 levels showed better prognosis than those with low levels. CONCLUSIONS Our investigation indicates that miR-3180 is a critical regulator involved in de novo fatty acid synthesis and uptake, which inhibits HCC tumor growth and metastasis by suppressing SCD1 and CD36. Therefore, miR-3180 is a novel therapeutic target and prognostic indicator for patients with HCC.
Collapse
Affiliation(s)
- Jie Hong
- Medical School of Guizhou University, Guiyang, China
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jie Liu
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yanan Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Ding
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Qinong Ye
- Medical School of Guizhou University, Guiyang, China.
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
4
|
Albadawy R, Hasanin AH, Agwa SHA, Hamady S, Mohamed RH, Gomaa E, Othman M, Yahia YA, Ghani AMA, Matboli M. Prospective insight into the role of benzyl propylene glycoside as a modulator of the cGAS-STING signaling pathway in the management of nonalcoholic fatty pancreas animal model. Biol Res 2023; 56:11. [PMID: 36915161 PMCID: PMC10010022 DOI: 10.1186/s40659-023-00423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty pancreatitis (NAFP) is one of the metabolic syndrome manifestations that need further studies to determine its molecular determinants and find effective medications. We aimed to investigate the potential effect of benzyl propylene glycoside on NAFP management via targeting the pancreatic cGAS-STING pathway-related genes (DDX58, NFκB1 & CHUK) and their upstream regulator miRNA (miR-1976) that were retrieved from bioinformatics analysis. METHODS The rats were fed either normal chow or a high-fat high-sucrose diet (HFHS), as a nutritional model for NAFP. After 8 weeks, the HFHS-fed rats were subdivided randomly into 4 groups; untreated HFHS group (NAFP model group) and three treated groups which received 3 doses of benzyl propylene glycoside (10, 20, and 30 mg/kg) daily for 4 weeks, parallel with HFHS feeding. RESULTS The molecular analysis revealed that benzyl propylene glycoside could modulate the expression of the pancreatic cGAS-STING pathway-related through the downregulation of the expression of DDX58, NFκB1, and CHUK mRNAs and upregulation of miR-1976 expression. Moreover, the applied treatment reversed insulin resistance, inflammation, and fibrosis observed in the untreated NAFP group, as evidenced by improved lipid panel, decreased body weight and the serum level of lipase and amylase, reduced protein levels of NFκB1 and caspase-3 with a significant reduction in area % of collagen fibers in the pancreatic sections of treated animals. CONCLUSION benzyl propylene glycoside showed a potential ability to attenuate NAFP development, inhibit pancreatic inflammation and fibrosis and reduce the pathological and metabolic disturbances monitored in the applied NAFP animal model. The detected effect was correlated with modulation of the expression of pancreatic (DDX58, NFκB1, and CHUK mRNAs and miR-1976) panel.
Collapse
Affiliation(s)
- Reda Albadawy
- Department of Gastroenterology, Hepatology & Infectious Disease, Faculty of Medicine, Benha University, Benha, 13518 Egypt
| | - Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sara H. A. Agwa
- Clinical Pathology and Molecular Genomics Unit, Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, 11382 Egypt
| | - Shaimaa Hamady
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566 Egypt
| | - Reham Hussein Mohamed
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Gomaa
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University, Giza, Egypt
| | - Mohamed Othman
- Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yahia A. Yahia
- Chemistry Department, School of Science and Engineering, American University in Cairo, New Cairo, 11835 Egypt
- Biochemistry Department, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | | | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, 11566 Egypt
| |
Collapse
|
5
|
Patel HR, Diaz Almanzar VM, LaComb JF, Ju J, Bialkowska AB. The Role of MicroRNAs in Pancreatitis Development and Progression. Int J Mol Sci 2023; 24:1057. [PMID: 36674571 PMCID: PMC9862468 DOI: 10.3390/ijms24021057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatitis (acute and chronic) is an inflammatory disease associated with significant morbidity, including a high rate of hospitalization and mortality. MicroRNAs (miRs) are essential post-transcriptional modulators of gene expression. They are crucial in many diseases' development and progression. Recent studies have demonstrated aberrant miRs expression patterns in pancreatic tissues obtained from patients experiencing acute and chronic pancreatitis compared to tissues from unaffected individuals. Increasing evidence showed that miRs regulate multiple aspects of pancreatic acinar biology, such as autophagy, mitophagy, and migration, impact local and systemic inflammation and, thus, are involved in the disease development and progression. Notably, multiple miRs act on pancreatic acinar cells and regulate the transduction of signals between pancreatic acinar cells, pancreatic stellate cells, and immune cells, and provide a complex interaction network between these cells. Importantly, recent studies from various animal models and patients' data combined with advanced detection techniques support their importance in diagnosing and treating pancreatitis. In this review, we plan to provide an up-to-date summary of the role of miRs in the development and progression of pancreatitis.
Collapse
Affiliation(s)
- Hetvi R. Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Vanessa M. Diaz Almanzar
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F. LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Qu Y, Ding Y, Lu J, Jia Y, Bian C, Guo Y, Zheng Z, Mei W, Cao F, Li F. Identification of key microRNAs in exosomes derived from patients with the severe acute pancreatitis. Asian J Surg 2023; 46:337-347. [PMID: 35691812 DOI: 10.1016/j.asjsur.2022.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Exosomes have been identified as important carriers of various genetic materials, including microRNAs (miRNAs). Increasing evidence indicates that the course of severe acute pancreatitis (SAP) is associated with miRNAs transported by exosomes. We aimed to identify the signature miRNAs as biomarkers of SAP. METHODS We obtained exosomes from the SAP patients' blood. After separation, purification, and identification, we performed high-throughput sequencing and screened the differentially expressed(DE) miRNAs in the exosomes. Bioinformatics analysis was performed to identified the target genes of the miRNAs and the pathways enriched based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, and selected the key miRNAs related to SAP. Total RNA was extracted from patient serum exosomes to detect the expression levels of the selected miRNAs in exosomes of three experimental groups (mild -, moderately severe -, and severe AP) and a control group, using Real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS 272 DE miRNAs were identified between SAP and control group. Using bioinformatics analysis, we determined that the functions of the target genes were enriched in six signaling pathways including focal adhesion. Based on this, seven candidate signature miRNAs were selected: miR-603, miR-548ad-5p, miR-122-5p, miR-4477a, miR-192-5p, miR-215-5p, and miR-583. The RT-qPCR results of the seven miRNAs in the SAP group were consistent with the sequencing results. CONCLUSION Exosome-derived miR-603, miR-548ad-5p, miR-122-5p, miR-4477a, miR-192-5p, miR-215-5p, miR-583 are positively correlated with SAP, which might provide new insights into the pathogenesis of SAP and serve as the biomarkers of SAP.
Collapse
Affiliation(s)
- Yuanxu Qu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing 100053, PR China
| | - Yixuan Ding
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing 100053, PR China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing 100053, PR China
| | - Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing 100053, PR China
| | - Chunjing Bian
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing 100053, PR China
| | - Yulin Guo
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing 100053, PR China
| | - Zhi Zheng
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing 100053, PR China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing 100053, PR China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing 100053, PR China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing 100053, PR China.
| |
Collapse
|
7
|
Yang H, Jiang P, Xiao P, Zhou H. Bone Marrow Mesenchymal Stem Cells Modified with microRNA-216a-5p Enhance Proliferation of Acinar Cells in Severe Acute Pancreatitis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assesses the effect of bone marrow mesenchymal stem cells (BMSC) modified with miR-216a-5p on acinar cell proliferation in SAP. 40 rats were equally assigned into miR-NC set, miR-216a-5p set, BMSC set and anti-miR-216a-5p set randomly. The SAP model was prepared using AR42J
cells which were disposed with CAE. Cells were transfected with lipidosome method to meaure miR-216-5p by RT-PCR, cell proliferation by CCK-8 along with analysis of cell clone formation and apoptosis. miR-216a-5p in modified BMSC was significantly upregulated compared with BMSC, indicating
that BMSC was modified with miR-216a-5p successfully. BMSC modified with miR-216a-5p significantly promoted cell proliferation and clone formation and decreased apoptosis. The luciferase activity in wild type of miR-216a-5p was reduced, indicating that miR-216-5p could target Pak2 gene. In
conclusion, proliferation of acinar cells in SAP is prompted and apoptosis ise reduced by BMSC modified with miR-216a-5p, which is possibly through targeting PAK2 gene.
Collapse
Affiliation(s)
- Hongxiu Yang
- Department of Critical Medicine, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Peng Jiang
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Pengfei Xiao
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Huiyu Zhou
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| |
Collapse
|
8
|
Yang Q, Luo Y, Lan B, Dong X, Wang Z, Ge P, Zhang G, Chen H. Fighting Fire with Fire: Exosomes and Acute Pancreatitis-Associated Acute Lung Injury. Bioengineering (Basel) 2022; 9:615. [PMID: 36354526 PMCID: PMC9687423 DOI: 10.3390/bioengineering9110615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a prevalent clinical condition of the digestive system, with a growing frequency each year. Approximately 20% of patients suffer from severe acute pancreatitis (SAP) with local consequences and multi-organ failure, putting a significant strain on patients' health insurance. According to reports, the lungs are particularly susceptible to SAP. Acute respiratory distress syndrome, a severe type of acute lung injury (ALI), is the primary cause of mortality among AP patients. Controlling the mortality associated with SAP requires an understanding of the etiology of AP-associated ALI, the discovery of biomarkers for the early detection of ALI, and the identification of potentially effective drug treatments. Exosomes are a class of extracellular vesicles with a diameter of 30-150 nm that are actively released into tissue fluids to mediate biological functions. Exosomes are laden with bioactive cargo, such as lipids, proteins, DNA, and RNA. During the initial stages of AP, acinar cell-derived exosomes suppress forkhead box protein O1 expression, resulting in M1 macrophage polarization. Similarly, macrophage-derived exosomes activate inflammatory pathways within endothelium or epithelial cells, promoting an inflammatory cascade response. On the other hand, a part of exosome cargo performs tissue repair and anti-inflammatory actions and inhibits the cytokine storm during AP. Other reviews have detailed the function of exosomes in the development of AP, chronic pancreatitis, and autoimmune pancreatitis. The discoveries involving exosomes at the intersection of AP and acute lung injury (ALI) are reviewed here. Furthermore, we discuss the therapeutic potential of exosomes in AP and associated ALI. With the continuous improvement of technological tools, the research on exosomes has gradually shifted from basic to clinical applications. Several exosome-specific non-coding RNAs and proteins can be used as novel molecular markers to assist in the diagnosis and prognosis of AP and associated ALI.
Collapse
Affiliation(s)
- Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bowen Lan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xuanchi Dong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
9
|
Gong F, Li X, Zhang H, Wu J, Ma G, Zhang B, Gao J, Ding Y, Huang Y, Xia K, Cheng S, Zhou X, Shi J, Zhao F. MiR-192-5p Alleviated Fibrosis and Inflammatory Responses of Tendon Cells by Targeting NFAT5. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6481846. [PMID: 35836925 PMCID: PMC9276496 DOI: 10.1155/2022/6481846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the effect of microRNA (miR)-192-5p on the inflammatory and fibrotic responses of tendon cells. Methods Tendon cells were treated with transforming growth factor-β1 (TGF-β1). The expression of miR-192-5p and nuclear factor of activated T cells 5 (NFAT5) in tendon cells were detected by RT-qPCR. The expressions of inflammatory and fibrosis-related factors were detected by RT-qPCR and Western blot. MiR-192-5p binds to NFAT5 targeting by TargetScan and dual-luciferase reporter gene assay. The expression of the NFAT5 gene was detected by RT-qPCR and Western blot. Detection of apoptosis in tendon cells by flow cytometry. Results MiR-192-5p was downregulated in tendon cells, and the expression level gradually decreased with the prolong of TGF-β1 treatment. The expression of NFAT5 increased with the treatment time of TGF-β1. The expression of miR-192-5p decreased collagen III (COLIII), α smooth muscle actin (α-SMA), matrix metalloproteinase- (MMP-) 1, and MMP-8 expression, thereby inhibiting TGF-β1-induced fibrosis in tendon cells. The expression of miR-192-5p decreased the expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β, thereby alleviating TGF-β1-induced inflammatory response and reduce apoptosis in tendon cells. NFAT5 is a direct target of miR-192-5p in tendon cells. The upregulation of NFAT5 reversed the effect of miR-192-5p on the fibrotic activity and inflammatory response of TGF-β1-stimulated tendon cells. Conclusions MiR-192-5p alleviates fibrosis and inflammatory responses of tendon cells by targeting NFAT5.
Collapse
Affiliation(s)
- Fan Gong
- Hand & foot & Reconstruction Microsurgery, People's Hospital of Ningxia Hui Autonomous Region (The First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, 750002 Ningxia, China
| | - Xiaoliang Li
- Hand & foot & Reconstruction Microsurgery, People's Hospital of Ningxia Hui Autonomous Region (The First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, 750002 Ningxia, China
| | - Hanling Zhang
- Hand & foot & Reconstruction Microsurgery, People's Hospital of Ningxia Hui Autonomous Region (The First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, 750002 Ningxia, China
| | - Jianke Wu
- Hand & foot & Reconstruction Microsurgery, People's Hospital of Ningxia Hui Autonomous Region (The First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, 750002 Ningxia, China
| | - Guoxu Ma
- Hand & foot & Reconstruction Microsurgery, People's Hospital of Ningxia Hui Autonomous Region (The First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, 750002 Ningxia, China
| | - Bowen Zhang
- Hand & foot & Reconstruction Microsurgery, People's Hospital of Ningxia Hui Autonomous Region (The First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, 750002 Ningxia, China
| | - Jian Gao
- Hand & foot & Reconstruction Microsurgery, People's Hospital of Ningxia Hui Autonomous Region (The First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, 750002 Ningxia, China
| | - Yi Ding
- Hand & foot & Reconstruction Microsurgery, People's Hospital of Ningxia Hui Autonomous Region (The First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, 750002 Ningxia, China
| | - Yonglu Huang
- Hand & foot & Reconstruction Microsurgery, People's Hospital of Ningxia Hui Autonomous Region (The First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, 750002 Ningxia, China
| | - Kun Xia
- Hand & foot & Reconstruction Microsurgery, People's Hospital of Ningxia Hui Autonomous Region (The First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, 750002 Ningxia, China
| | - Suoli Cheng
- Hand & foot & Reconstruction Microsurgery, People's Hospital of Ningxia Hui Autonomous Region (The First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, 750002 Ningxia, China
| | - Xuebing Zhou
- Hand & foot & Reconstruction Microsurgery, People's Hospital of Ningxia Hui Autonomous Region (The First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, 750002 Ningxia, China
| | - Jiandang Shi
- Hand & foot & Reconstruction Microsurgery, People's Hospital of Ningxia Hui Autonomous Region (The First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, 750002 Ningxia, China
| | - Fei Zhao
- Hand & foot & Reconstruction Microsurgery, People's Hospital of Ningxia Hui Autonomous Region (The First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, 750002 Ningxia, China
| |
Collapse
|
10
|
New challenges for microRNAs in acute pancreatitis: progress and treatment. J Transl Med 2022; 20:192. [PMID: 35509084 PMCID: PMC9066850 DOI: 10.1186/s12967-022-03338-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/06/2022] [Indexed: 12/17/2022] Open
Abstract
Acute pancreatitis (AP) is a common clinical abdominal emergency, with a high and increasing incidence each year. Severe AP can easily cause systemic inflammatory response syndrome, multiple organ dysfunction and other complications, leading to higher hospitalization rates and mortality. Currently, there is no specific treatment for AP. Thus, we still need to understand the exact AP pathogenesis to effectively cure AP. With the rise of transcriptomics, RNA molecules, such as microRNAs (miRNAs) transcribed from nonprotein-coding regions of biological genomes, have been found to be of great significance in the regulation of gene expression and to be involved in the occurrence and development of many diseases. Increasing evidence has shown that miRNAs, as regulatory RNAs, can regulate pancreatic acinar necrosis and apoptosis and local and systemic inflammation and play an important role in the development and thus potentially the diagnosis and treatment of AP. Therefore, here, the current research on the relationship between miRNAs and AP is reviewed.
Collapse
|
11
|
Downregulation of lncRNA NEAT1 Relieves Caerulein-Induced Cell Apoptosis and Inflammatory Injury in AR42J Cells Through Sponging miR-365a-3p in Acute Pancreatitis. Biochem Genet 2022; 60:2286-2298. [PMID: 35325441 DOI: 10.1007/s10528-022-10219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Mounting evidence suggests that long non-coding RNAs (lncRNAs) and microRNAs exert a critical regulatory role in acute pancreatitis. The present study aimed to explore the role of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in acute pancreatitis (AP) that was induced by caerulein in rat pancreatic acinar cells (AR42J). The potential target sites of lncRNA NEAT1 and miR-365a-3p were predicted using starBase and were confirmed using dual-luciferase reporter assay. Reverse transcription-quantitative polymerase chain reaction was performed to assess lncRNA NEAT1 and miR-365a-3p expression levels in AP induced by caerulein. Cell Counting Kit-8 and flow cytometry assays were performed to assess AR42J cell viability. Western blotting was performed to evaluate the expression of apoptosis-related proteins. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels were detected by ELISA. The results of the dual-luciferase reporter assay confirmed that miR-365a-3p could bind to NEAT1. LncRNA NEAT1 was upregulated in AR42J cells treated with 10 nmol/l caerulein, and miR-365a-3p was expressed at low levels in an AP model. Overexpression of miR-365a-3p suppressed the apoptosis and inflammatory response of AR42J cells induced by caerulein. Importantly, inhibition of lncRNA NEAT1 decreased apoptosis and inflammation in caerulein-treated AR42J cells, while these effects were reverted upon co-transfection with a miR-365a-3p inhibitor. In conclusion, lncRNA NEAT1 was involved in AP progression by sponging miR-365a-3p and may thus be a novel target for treating patients with AP.
Collapse
|
12
|
Wang X, Cai H, Chen Z, Zhang Y, Wu M, Xu X, Yang L. Baicalein alleviates pyroptosis and inflammation in hyperlipidemic pancreatitis by inhibiting NLRP3/Caspase-1 pathway through the miR-192-5p/TXNIP axis. Int Immunopharmacol 2021; 101:108315. [PMID: 34785144 DOI: 10.1016/j.intimp.2021.108315] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/13/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Hyperlipidemia is a main reason of pancreatitis. Baicalein can ameliorate the pathological manifestations of pancreatitis. This study evaluated underlying molecular mechanism of baicalein in hyperlipidemic pancreatitis (HP). METHODS HP rat model was successfully established and treated with baicalein. Amylase (AMY) activity and concentrations of triglyceride (TG) and total cholesterol (TC) were detected. Levels of pyroptosis-related proteins (GSDMD, IL-1β, IL-18) were detected by Western blot. Expressions of inflammatory factors (IL-6, TNF-α, IL-4) were detected by ELISA. Toxicity of baicalein on pancreatic acinar cells (PACs) was detected by MTT assay. HP cell model was established by 0.1 mM palmitic acid and CCK-8 stimulation. Target relation of miR-192-5p and TXNIP was predicted and verified by RNA22 v2 database and dual-luciferase reporter assay. Expressions of miR-192-5p and TXNIP were detected by RT-qPCR. Pyroptosis and inflammation in PACs were detected after baicalein treatment combined with silencing miR-192-5p or TXNIP overexpression. Protein levels of NLRP3/Caspase-1 pathway in vivo and vitro were detected. RESULTS Baicalein reduced concentrations of TG and TC, AMY activity, and pathological scores in HP rat model, reduced LDH activity, pyroptosis and alleviated inflammation in vivo and in vitro. Mechanically, miR-192-5p targeted TXNIP, and baicalein inhibited pyroptosis and inflammation by up-regulating miR-192-5p and down-regulating TXNIP. Silencing miR-192-5p or TXNIP overexpression partially abolished the anti-pyroptosis and anti-inflammatory effect of baicalein on PACs. Baicalein attenuated HP by inhibiting the NLRP3/Caspase-1 pathway. CONCLUSION Baicalein alleviated pyroptosis and inflammation in HP by inhibiting the NLRP3/Caspase-1 pathway through miR-192-5p upregulation and TXNIP inhibition.
Collapse
Affiliation(s)
- Xiangyang Wang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Hua Cai
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Zhiyuan Chen
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Yu Zhang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Minghao Wu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Xiaoping Xu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Li Yang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China.
| |
Collapse
|
13
|
Zhang X, Asllanaj E, Amiri M, Portilla-Fernandez E, Bramer WM, Nano J, Voortman T, Pan Q, Ghanbari M. Deciphering the role of epigenetic modifications in fatty liver disease: A systematic review. Eur J Clin Invest 2021; 51:e13479. [PMID: 33350463 PMCID: PMC8243926 DOI: 10.1111/eci.13479] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fatty liver disease (FLD), primarily nonalcoholic fatty liver disease (NAFLD), is the most common liver disorder that affects a quarter of the global population. NAFLD is a spectrum of disease ranging from simple steatosis to nonalcoholic steatohepatitis, which is associated with increased risk of developing liver cancer. Given that the pathogenic mechanisms of fatty liver remain largely elusive, it is important to further investigate potential underlying mechanisms including epigenetic modifications. Here, we performed a systematic review of human epigenetic studies on FLD presence. METHODS Five bibliographic databases were screened until 28 August 2020. We included cross-sectional, case-control and cohort studies in humans that examined the association of epigenetic modifications including global, candidate or epigenome-wide methylation of DNA, noncoding RNAs and histone modifications with FLD. RESULTS In total 36 articles, based on 33 unique studies, consisting of 12 112 participants met the inclusion criteria. Among these, two recent epigenome-wide association studies conducted among large population-based cohorts have reported the association between cg06690548 (SLC7A11) and FLD. Moreover, several studies have demonstrated the association between microRNAs (miRNAs) and FLD, in which miR-122, miR-34a and miR-192 were recognized as the most relevant miRNAs as biomarkers for FLD. We did not find any studies examining histone modifications in relation to FLD. CONCLUSIONS Cumulative evidence suggests a link between epigenetic mechanisms, specifically DNA methylation and miRNAs, and FLD. Further efforts should investigate the molecular pathways by which these epigenetic markers may regulate FLD and also the potential role of histone modifications in FLD.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Epidemiology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eralda Asllanaj
- Department of Epidemiology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands.,Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Masoud Amiri
- Department of Epidemiology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eliana Portilla-Fernandez
- Department of Epidemiology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wichor M Bramer
- Medical Library, Erasmus MC, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Jana Nano
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Diabetes Center, München-Neuherberg, Germany
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|