1
|
Yan Q, Wong W, Gong L, Yang J, Liang D, Chin KY, Dai S, Wang J. Roles of long non‑coding RNAs in esophageal cell squamous carcinoma (Review). Int J Mol Med 2024; 54:72. [PMID: 38963019 PMCID: PMC11232667 DOI: 10.3892/ijmm.2024.5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non‑coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA‑protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial‑mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non‑coding repressor of NFAT have been shown to enhance resistance to radio‑ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1‑type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA‑binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.
Collapse
Affiliation(s)
- Qihang Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| | - Wingshing Wong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Li Gong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jie Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Dachuan Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Shuqin Dai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Junye Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
2
|
Zhang M, Wang Z, Wu Y, Chen M, Li J, Liu G. Hypoxia-induced factor-1α promotes radioresistance of esophageal cancer cells by transcriptionally activating LINC01116 and suppressing miR-3612 under hypoxia. J Biochem Mol Toxicol 2024; 38:e23551. [PMID: 37983895 DOI: 10.1002/jbt.23551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/02/2023] [Accepted: 09/27/2023] [Indexed: 11/22/2023]
Abstract
Esophageal cancer (EC) is a challenging tumor to treat with radiotherapy, often exhibiting resistance to this treatment modality. To explore the factors influencing radioresistance, we focused on the role of hypoxia-induced factor-1α (HIF-1α), and its interaction with the long noncoding RNA long intergenic nonprotein coding RNA 1116 (LINC01116). We analyzed the LINC01116 expression in EC and EC cell lines/human normal esophageal epithelial cell line (Het-1A). LINC01116 was silenced/overexpressed in EC109/KYSE30 cells under hypoxia, followed by radioresistance assessment. We measured HIF-1α levels in hypoxic EC cells and further validated the binding of HIF-1α with LINC01116, analyzing their interaction in EC cells. We then performed experiments in EC109 cells by transfection them with sh-HIF-1α/oe-LINC01116 to verify the effects. Additonally, we analyzed the localization of LINC01116 and its binding with miR-3612, followed by a combined experiment performed to validate the results. Our findings indicated that LINC01116 was highly expressed in EC and further elevated in hypoxic EC cells. LINC01116 was expressed at a high level in EC, which was further elevated in EC cells under hypoxic conditions. Knockdown of LINC01116 triggered EC cell apoptosis, thus suppressing radioresistance. Further investigation revealed that HIF-1α transcriptionally activated LINC01116 expression under hypoxia, and silencing HIF-1α lowered EC cell radioresistance by downregulating LINC01116. Under hypoxic conditions, LINC01116 could function as a sponge for miR-3612 and inhibit its expression. This interaction between LINC01116 and miR-3612 played a crucial role in mediating radioresistance in EC cells. Briefly, under hypoxic conditions, HIF-1α facilitates radioresistance of EC cells by transcriptionally activating LINC01116 expression and downregulating miR-3612.
Collapse
Affiliation(s)
- Mengyan Zhang
- Oncology Department, Guangzhou No.1 People's Hospital, Guangzhou City, Guangdong Province, P.R. China
- Thoracic Radiotherapy Department, Fujian Medical University Cancer Hospital Fujian Cancer Hospital, Fuzhou City, Fujian Province, P.R. China
| | - Zhiping Wang
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou City, Fujian Province, P.R. China
| | - Yahua Wu
- Thoracic Radiotherapy Department, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, P.R. China
| | - Mingqiu Chen
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou City, Fujian Province, P.R. China
| | - Jiancheng Li
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou City, Fujian Province, P.R. China
| | - Guolong Liu
- Oncology Department, Guangzhou No.1 People's Hospital, Guangzhou City, Guangdong Province, P.R. China
| |
Collapse
|
3
|
Long Q, Xiang M, Xiao L, Wang J, Guan X, Liu J, Liao C. The Biological Significance of AFF4: Promoting Transcription Elongation, Osteogenic Differentiation and Tumor Progression. Comb Chem High Throughput Screen 2024; 27:1403-1412. [PMID: 37815186 DOI: 10.2174/0113862073241079230920082056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/23/2023] [Accepted: 07/27/2023] [Indexed: 10/11/2023]
Abstract
As a member of the AF4/FMR2 (AFF) family, AFF4 is a scaffold protein in the superelongation complex (SEC). In this mini-view, we discuss the role of AFF4 as a transcription elongation factor that mediates HIV activation and replication and stem cell osteogenic differentiation. AFF4 also promotes the progression of head and neck squamous cell carcinoma, leukemia, breast cancer, bladder cancer and other malignant tumors. The biological function of AFF4 is largely achieved through SEC assembly, regulates SRY-box transcription factor 2 (SOX2), MYC, estrogen receptor alpha (ESR1), inhibitor of differentiation 1 (ID1), c-Jun and noncanonical nuclear factor-κB (NF-κB) transcription and combines with fusion in sarcoma (FUS), unique regulatory cyclins (CycT1), or mixed lineage leukemia (MLL). We explore the prospects of using AFF4 as a therapeutic in Acquired immunodeficiency syndrome (AIDS) and malignant tumors and its potential as a stemness regulator.
Collapse
Affiliation(s)
- Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Mingli Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Jiajia Wang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| |
Collapse
|
4
|
Zhao L, You Z, Bai Z, Xie J. Machine learning-based construction of a ferroptosis and necroptosis associated lncRNA signature for predicting prognosis and immunotherapy response in hepatocellular cancer. Front Oncol 2023; 13:1171878. [PMID: 37152064 PMCID: PMC10157233 DOI: 10.3389/fonc.2023.1171878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Liver hepatocellular carcinoma (LIHC), one of the most common malignancies worldwide, occurs with high incidence and mortality. Ferroptosis and necroptosis are critically associated with LIHC prognosis. Some long non-coding RNAs (lncRNAs) have been found to induce ferroptosis and necroptosis in hepatocellular carcinoma cells. Methods Cox regression analysis was used to construct a risk model for LIHC based on differentially expressed ferroptosis and necroptosis related lncRNAs (F-NLRs), and their expression in SMMC7721, HepG2 and WRL68 cells was detected by qPCR. Results Five F-NLRs were associated with LIHC prognosis, including KDM4A-AS1, ZFPM2-AS1, AC099850.3, MKLN1-AS, and BACE1-AS. Kaplan-Meier survival analysis indicated that patients with LIHC in the high-risk group were associated with poor prognosis. The combined F-NLR signature model demonstrated a prognostic AUC value of 0.789 and was more accurate than standard clinical variables for predicting LIHC prognosis. T cell functions and immunotherapy responses differed significantly between patients in the low- and high-risk groups. Additionally, immune checkpoints and m6A-related genes were differentially expressed between patients in the two risk groups. Furthermore, proteins encoded by the five F-NLRs were overexpressed in four liver cancer cell lines compared to that in human liver cell line WRL68. Pan-cancer examination revealed that expression levels of the five F-NLRs differed between most common tumor types and normal tissues. Conclusion F-NLRs identified in this study provide a predictive signature representing ferroptosis and necroptosis in LIHC, which correlated well with patient prognosis, clinicopathological characteristics, and immunotherapy responses. The study findings help to elucidate the mechanisms of F-NLRs in LIHC and provide further guidance for the selection and development of immunotherapeutic agents for LIHC.
Collapse
Affiliation(s)
- Lei Zhao
- The Third Clinical lnstitute, Guangzhou Medical University, Guangzhou, China
| | - Zhixuan You
- The Third Clinical lnstitute, Guangzhou Medical University, Guangzhou, China
| | - Zhixun Bai
- Department of Nephrology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Zhixun Bai, ; Jian Xie,
| | - Jian Xie
- Department of Medical Genetics, Zunyi Medical University, Zunyi, China
- *Correspondence: Zhixun Bai, ; Jian Xie,
| |
Collapse
|
5
|
Zhang W, Zhang Q, Cui Q, Xu Y. MiR-3612 targeting THBS1 suppresses nasopharyngeal carcinoma progression by PI3K/AKT signaling pathway. Hum Exp Toxicol 2023; 42:9603271221150248. [PMID: 36607163 DOI: 10.1177/09603271221150248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND MicroRNA-3612 (miR-3612) is considered a tumor suppressor in different cancers. Nonetheless, its function in nasopharyngeal carcinoma (NPC) has yet to be uncovered. METHODS NPC cells and tissues were tested by means of reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis and western blotting to quantify the expressions of miR-3612 and Thrombospondin 1 (THBS1). Cell Counting Kit-8 (CCK-8) and scratch experiments were carried out to evaluate the migration and proliferation of NPC cells. NPC cell adhesion was also assessed. The predicted interaction of miR-3612 with THBS1 was verified by means of a luciferase reporter assay. In vivo experiments were also conducted to examine how miR-3612 overexpression affects in vivo tumorigenicity. Lastly, phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway status was assessed via western blotting. RESULTS MiR-3612 was downregulated in NPC cells and tissues, whereas THBS1 expression showed an opposite trend. The MiR-3612 mimic inhibited the NPC cell proliferation, adhesion, and migration and also inactivated the PI3K/AKT signaling pathway. Furthermore, miR-3612 mimic also hampered NPC tumorigenesis in vivo. MiR-3612 targeted THBS1 and downregulated THBS1 expression. THBS1 offset the miR-3612-overexpression-induced repression of the migration, adhesion, and proliferation of NPC cells via the activation of the PI3K/AKT pathway. CONCLUSION MiR-3612 retarded NPC cell migration, adhesion, and proliferation by targeting THBS1 and inactivating the PI3K/AKT signaling pathway. This provides a novel therapeutic approach for NPC intervention.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Otolaryngology Head and Neck Surgery, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiu Zhang
- Department of Otorhinolaryngology, 593237Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Qianbo Cui
- Department of Otorhinolaryngology Head and Neck Surgery, 577528The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Molecular Diagnosis of Hubei Province, 577528The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology Head and Neck Surgery, 117921Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology Head and Neck Surgery, 117921Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Chang X, Jian L. LncRNA ZFPM2-AS1 drives the progression of nasopharyngeal carcinoma via modulating the downstream miR-3612/DTL signaling. Anticancer Drugs 2022; 33:523-533. [PMID: 35276693 DOI: 10.1097/cad.0000000000001282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
LncRNA ZFPM2-AS1 has been illuminated to function as a carcinogenic driver in various human cancers. Whereas, the role of ZFPM2-AS1 in nasopharyngeal carcinoma (NPC) remains puzzled. To further understand NPC pathogenesis, we investigated the regulatory effects of ZFPM2-AS1 in NPC. Expression analysis for ZFPM2-AS1, miR-3612 and denticleless E3 ubiquitin protein ligase homolog (DTL) mRNA was carried out using real-time quantitative PCR. For the expression analysis of DTL protein, a western blot assay was applied. Cell proliferation was ascertained using the cell counting kit-8 assay and colony formation assay. Cell apoptosis was estimated based on the expression levels of BCL2-Associated X and B-cell lymphoma-2 using western blot assay. To verify the role of ZFPM2-AS1, a Xenograft model was prepared in vivo. The underlying binding between miR-3612 and ZFPM2-AS1 or DTL was validated through dual-luciferase-reporter assay or protein immunoprecipitation assay. ZFPM2-AS1 showed upregulated expression in NPC samples and cells. Meanwhile, ZFPM2-AS1 was mainly located in the cytoplasm. Knockdown of ZFPM2-AS1 restrained NPC cell proliferation and induced apoptosis, as well as suppressed tumorigenesis in animal models. ZFPM2-AS1 targeted miR-3612 whose expression was decreased in NPC samples and cells. Repression of miR-3612 aggravated NPC cell development and largely reversed the functional role of ZFPM2-AS1 silencing on NPC cell growth. MiR-3612 directly interacted with DTL, and DTL expression was upregulated in NPC. Downregulation of DTL blocked NPC cell growth, while miR-3612 inhibition partly abrogated the effects of DTL knockdown. ZFPM2-AS1 knockdown considerably restrained NPC development via targeting the miR-3612/DTL signaling. The study provided new insights to understand NPC pathogenesis.
Collapse
Affiliation(s)
- Xiaojing Chang
- Department of Otolaryngology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | | |
Collapse
|
7
|
Circular RNA circ_0006948 Promotes Esophageal Squamous Cell Carcinoma Progression by Regulating microRNA-3612/LASP1 Axis. Dig Dis Sci 2022; 67:2158-2172. [PMID: 34024023 DOI: 10.1007/s10620-021-07057-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/11/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is the most prevalent malignancy worldwide. Circular RNAs (circRNAs) circ_0006948 is reported to be upregulated in ESCC cells. AIMS This study is designed to explore the role and mechanism of circ_0006948 in ESCC progression. METHODS Circ_0006948, linear FNDC3B, microRNA-3612 (miR-3612), and LIM and SH3 protein 1 (LASP1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, colony number, migration, invasion, and apoptosis were examined by Cell Counting Kit-8 (CCK-8), colony formation, transwell, and flow cytometry assays, severally. Glucose consumption, lactate production, and ATP level were measured by the corresponding kits. Protein levels of hexokinase 2 (HK2) and lactate dehydrogenase A (LDHA), and LASP1 were assessed by western blot assay. The cytoplasmic localization of circ_0006948 was identified by the subcellular fractionation assay. The binding relationship between miR-3612 and circ_0006948 or LASP1 was predicted by starBase or TargetScan and then verified by a dual-luciferase reporter assay. The biological role of circ_0006948 on ESCC tumor growth was examined by the xenograft tumor model in vivo. RESULTS Circ_0006948 and LASP1 were increased, and miR-3612 was decreased in ESCC tissues and cells. Furthermore, circ_0006948 knockdown could suppress cell viability, colony number, migration, invasion, glycolysis, and boost apoptosis in ESCC cells. Mechanically, circ_0006948 could act as a sponge of miR-3612 to regulate LASP1 expression. In addition, circ_0006948 silencing inhibited ESCC tumor growth in vivo. CONCLUSION Circ_0006948 boosted ESCC progression partly by regulating the miR-3612/LASP1 axis, providing an underlying therapeutic target for the ESCC treatment.
Collapse
|
8
|
LncRNA MAFG-AS1 deregulated in breast cancer affects autophagy and progression of breast cancer by interacting with miR-3612 and FKBP4 invitro. Biochem Biophys Res Commun 2022; 616:95-103. [PMID: 35653827 DOI: 10.1016/j.bbrc.2022.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/07/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE We aimed to explore the function and competing endogenous RNA (ceRNA) pathway of MAFG-AS1 in breast cancer. METHODS qRT-PCR assay identified the expression of MAFG-AS1, miR-3612 and FKBP4. We used Western blot analysis to test the autophagy related protein levels in breast cancer cells. Functional assays such as Cell Counting Kit-8 (CCK8) assay, BrdU proliferation assay, Caspase-3 activity detection were used to identify the function of MAFG-AS1, miR-3612 and FKBP4 in breast cancer cells. Mechanism assays were used to verify the interacting relationship among MAFG-AS1, miR-3612 and FKBP4, including RNA pull down assay, RNA immunoprecipitation (RIP) assay and luciferase reporter assay. RESULTS MAFG-AS1 and FKBP4 were both up-regulated in breast cancer tissues. MAFG-AS1 could function as an oncogene in breast cancer to activate cell proliferation, and inhibit cell apoptosis and autophagy. Meanwhile, MAFG-AS1 could sponge miR-3612 to elevate the expression of FKBP4. Besides, FKBP4 could activate the cell proliferation and inhibit cell apoptosis and autophagy, which could relieve the inhibitory effect of miR-3612 on breast cancer cells. CONCLUSION MAFG-AS1 could activate breast cancer progression via modulating miR-3612/FKBP4 axis in vitro.
Collapse
|
9
|
A Pleiotropic Role of Long Non-Coding RNAs in the Modulation of Wnt/β-Catenin and PI3K/Akt/mTOR Signaling Pathways in Esophageal Squamous Cell Carcinoma: Implication in Chemotherapeutic Drug Response. Curr Oncol 2022; 29:2326-2349. [PMID: 35448163 PMCID: PMC9031703 DOI: 10.3390/curroncol29040189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of modern techniques for the treatment of esophageal squamous cell carcinoma (ESCC), tumor recurrence and metastasis are significant challenges in clinical management. Thus, ESCC possesses a poor prognosis and low five-year overall survival rate. Notably, the origin and recurrence of the cancer phenotype are under the control of complex cancer-related signaling pathways. In this review, we provide comprehensive knowledge about long non-coding RNAs (lncRNAs) related to Wnt/β-catenin and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in ESCC and its implications in hindering the efficacy of chemotherapeutic drugs. We observed that a pool of lncRNAs, such as HERES, TUG1, and UCA1, associated with ESCC, directly or indirectly targets various molecules of the Wnt/β-catenin pathway and facilitates the manifestation of multiple cancer phenotypes, including proliferation, metastasis, relapse, and resistance to anticancer treatment. Additionally, several lncRNAs, such as HCP5 and PTCSC1, modulate PI3K/Akt/mTOR pathways during the ESCC pathogenesis. Furthermore, a few lncRNAs, such as AFAP1-AS1 and LINC01014, block the efficiency of chemotherapeutic drugs, including cisplatin, 5-fluorouracil, paclitaxel, and gefitinib, used for ESCC treatment. Therefore, this review may help in designing a better therapeutic strategy for ESCC patients.
Collapse
|
10
|
Zhang G, Liu SL, Yi WT, Dong YP, Wan YX. Long noncoding RNA ZFPM2-AS1 regulates renal cell carcinoma progression via miR-130a-3p/ESCO2. Kaohsiung J Med Sci 2022; 38:530-541. [PMID: 35258173 DOI: 10.1002/kjm2.12527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/07/2022] Open
Abstract
Previous studies reported that long noncoding RNA (lncRNA) ZFPM2-AS1 is upregulated in renal cell carcinoma (RCC). However, the biological role of lncRNA ZFPM2-AS1 in RCC has not been explored. In this study, we investigated the role of lncRNA ZFPM2-AS1 in the progression of RCC. Quantitative real-time polymerase chain reaction was used for gene expression analysis, and functional assays including Cell Counting Kit-8 assay, flow cytometry-based apoptosis assay and transwell migration assays were performed to examine the malignant phenotypes. The functional interaction between ZFPM2-AS1 or miR-130A-3P and their targets was detected by dual-luciferase reporter assay. We found that the expressions of ZFPM2-AS1 and ESCO2 were upregulated in RCC tissues and cells, whereas miR-130a-3p was downregulated. The expression level of ZFPM2-AS1 is significantly associated with advanced TNM, distant metastasis, lymphatic metastasis, and a poor overall survival in RCC patients. Silencing ZFPM2-AS1 in RCC cells suppressed cell proliferation, invasion, and migration, and induced cell apoptosis. ZFPM2-AS1 interacted with miR-130A-3P and negatively regulated its expression in RCC cells. We further showed that ESCO2 was a downstream target of miR-130a-3p. Both miR-130a-3p inhibitor and ESCO2 overexpression could rescue the inhibitory effects of ZFPM2-AS1 knockdown in RCC cells. Together, our study demonstrates that ZFPM2-AS1 plays an oncogenic role in RCC progression via the miR-130a-3p/ESCO2 axis.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Urology section, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Song-Lin Liu
- Department of Urology section, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Wen-Ting Yi
- Department of Medical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Yu-Ping Dong
- Department of Hematopathology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Yin-Xu Wan
- Department of Urology section, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
11
|
Ruan X, Zhang R, Li R, Zhu H, Wang Z, Wang C, Cheng Z, Peng H. The Research Progress in Physiological and Pathological Functions of TRAF4. Front Oncol 2022; 12:842072. [PMID: 35242717 PMCID: PMC8885719 DOI: 10.3389/fonc.2022.842072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Abstract
Tumour necrosis factor receptor-associated factor 4 (TRAF4) is a member of the TRAF protein family, a cytoplasmic bridging molecule closely associated with various immune functions. The physiological processes of TRAF4 are mainly involved in embryonic development, cell polarity, cell proliferation, apoptosis, regulation of reactive oxygen species production. TRAF4 is overexpressed in a variety of tumors and regulates the formation and development of a variety of tumors. In this review, we summarize the physiological and pathological regulatory functions of TRAF4 and focus on understanding the biological processes involved in this gene, to provide a reference for further studies on the role of this gene in tumorigenesis and development.
Collapse
Affiliation(s)
- Xueqin Ruan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Rong Zhang
- Division of Cancer Immunotherapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Chiba, Japan
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Canfei Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Lu J, Xiao Z, Xu M, Li L. New Insights into LINC00346 and its Role in Disease. Front Cell Dev Biol 2022; 9:819785. [PMID: 35096842 PMCID: PMC8794746 DOI: 10.3389/fcell.2021.819785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has shown that long intergenic non-protein-coding RNA 346 (LINC00346) functions as an oncogene in the tumorigenesis of several cancers. The expression level of LINC00346 has been shown to be obviously correlated with prognosis, lymphoma metastasis, histological grade, TNM stage, tumor size and pathologic stage. LINC00346 has been found to regulate specific cellular functions by interacting with several molecules and signaling pathways. In this review, we summarize recent evidence concerning the role of LINC00346 in the occurrence and development of diseases. We also discuss the potential clinical utility of LINC00346, thereby providing new insight into the diagnosis and treatment of diseases. In addition, we further discuss the potential clinical utility of LINC00346 in the diagnosis, prognostication, and treatment of diseases.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoying Xiao
- Department of Infectious Diseases Shengzhou People' Hospital, Shengzhou Branch, The Fisrt Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Mengqiu Xu
- Department of Infectious Diseases Shengzhou People' Hospital, Shengzhou Branch, The Fisrt Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Long Non-coding RNA ZFPM2-AS1: A Novel Biomarker in the Pathogenesis of Human Cancers. Mol Biotechnol 2022; 64:725-742. [DOI: 10.1007/s12033-021-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
|
14
|
Zhang H, Liu R, Sun L, Hu X. An lncRNA Model for Predicting the Prognosis of Hepatocellular Carcinoma Patients and ceRNA Mechanism. Front Mol Biosci 2021; 8:749313. [PMID: 34869585 PMCID: PMC8633432 DOI: 10.3389/fmolb.2021.749313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Liver cancer is a highly malignant tumor. Notably, recent studies have found that long non-coding RNAs (lncRNAs) play a prominent role in the prognosis of patients with liver cancer. Herein, we attempted to construct an lncRNA model to accurately predict the survival rate in liver cancer. Based on The Cancer Genome Atlas (TCGA) database, we first identified 1066 lncRNAs with differential expression. The patient data obtained from TCGA were divided into the experimental group and the verification group. According to the difference in lncRNAs, we used single-factor and multi-factor Cox regression to select the genes needed to build the model in the experimental group, which were verified in the verification group. The results showed that the model could accurately predict the survival rate of patients in the high and low risk groups. The reliability of the model was also confirmed by the area under the receiver operating characteristic curve. Our model is significantly correlated with different clinicopathological features. Finally, we built a ceRNA network based on lncRNAs, which was used to display miRNAs and mRNAs related to lncRNAs. In summary, we constructed an lncRNA model to predict the survival rate of patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Renzheng Liu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Sun
- Department of ICU, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Hu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Wang K, Li M, Zhang T, Xu C, Yu F, Duan H. LncRNA LINC01116 facilitates melanoma 1 progression via sequestering miR-3612 and up-regulating GDF11 and SDC3. Arch Med Res 2021; 53:44-50. [PMID: 34266696 DOI: 10.1016/j.arcmed.2021.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Melanoma is the deadliest cutaneous malignant tumor with high risks. Though increasing evidence has widely referred to the involvement of long non-coding RNAs (lncRNAs) in the mechanism of tumor development, including melanoma, the functional roles of most lncRNAs in melanoma remain to be explored. In this study, we focus on disclosing the role of long intergenic non-protein coding RNA 1116 (LINC01116) in melanoma. METHODS Firstly, we detected LINC01116 expression through RT-qPCR. Functional analysis and animal experiments were carried out to assess the role of LINC01116 in vivo and in vitro. Western blot analysis was employed for detection of important markers regarding epithelial mesenchymal transition (EMT). In addition, RNA pulls down, RIP and luciferase reporter assays were performed to probe into the regulatory mechanism of LINC01116. RESULTS LINC01116 was significantly up regulated in melanoma cells. LINC01116 deficiency abrogated cell proliferation, migration, invasion and EMT in melanoma. Moreover, LINC01116 enhanced growth differentiation factor 11 (GDF11) and syndecan 3 (SDC3) expression through sponging microRNA-3612 (miR-3612). The oncogenic role of the LINC01116/miR-3612/GDF11/SDC3 axis in melanoma was finally demonstrated. CONCLUSION Conclusively, LINC01116 sequestered miR-3612 and targeted GDF11 and SDC3 to contribute to the progression of melanoma.
Collapse
Affiliation(s)
- Kai Wang
- Henan Provincial People's Hospital, International Medical Center, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Min Li
- Department of Dermatology, Henan Provincial People's Hospital; Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Tong Zhang
- Henan Provincial People's Hospital, International Medical Center, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Chengyang Xu
- Henan Provincial People's Hospital, International Medical Center, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Feifei Yu
- Henan Provincial People's Hospital, International Medical Center, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Hongyan Duan
- Henan Provincial People's Hospital, International Medical Center, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
16
|
Ren R, Du Y, Niu X, Zang R. ZFPM2-AS1 transcriptionally mediated by STAT1 regulates thyroid cancer cell growth, migration and invasion via miR-515-5p/TUSC3. J Cancer 2021; 12:3393-3406. [PMID: 33976749 PMCID: PMC8100800 DOI: 10.7150/jca.51437] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Objective: Our purpose was to study the roles and molecular mechanisms of long non-coding RNA (lncRNA) ZFPM2 Antisense RNA 1 (ZFPM2-AS1) in thyroid cancer. Methods: Firstly, the expression of ZFPM2-AS1, miR-515-5p and TUSC3 was detected in thyroid cancer tissues and cells. Secondary, their biological functions (proliferation, apoptosis, migration and invasion) were analyzed by a serious of functional experiments including cell counting kit-8 (CCK-8), clone formation, 5-Ethynyl-2'-deoxyuridine (EdU), enzyme-linked immunosorbent assay (ELISA), wound healing and Transwell assays. Thirdly, the mechanisms of STAT1/ZFPM2-AS1 and ZFPM2-AS1/miR-515-5p/TUSC were validated using chromatin immunoprecipitation (CHIP), pull-down and luciferase reporter assays. Results: ZFPM2-AS1 and TUSC were both highly expressed and miR-515-5p was down-regulated in thyroid cancer tissues as well as cells. Their knockdown weakened thyroid cancer cell growth, migration, and invasion. ZFPM2-AS1 was mainly distributed in the nucleus and cytoplasm of thyroid cancer cells. Mechanistically, up-regulation of ZFPM2-AS1 was induced by transcription factor STAT1 in line with CHIP and luciferase reporter assays. Furthermore, as a sponge of miR-515-5p, ZFPM2-AS1 decreased the ability of miR-515-5p to inhibit TUSC3 expression by pull-down, luciferase reporter and gain-and-loss assays, thereby promoting malignant progression of thyroid cancer. Conclusion: ZFPM2-AS1 acted as an oncogene in thyroid cancer, which was transcriptionally mediated by STAT1. Furthermore, ZFPM2-AS1 weakened the inhibitory effect of miR-515-5p on TUSC3. Thus, ZFPM2-AS1 could be an underlying biomarker for thyroid cancer.
Collapse
Affiliation(s)
- Ruizhen Ren
- Department of Endocrinology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai 264000, Shandong, China
| | - Yuanna Du
- Department of Radiotherapy, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai 264000, Shandong, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Rukun Zang
- Department of Radiotherapy, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai 264000, Shandong, China
| |
Collapse
|
17
|
Liu W, Hu X, Mu X, Tian Q, Gao T, Ge R, Zhang J. ZFPM2-AS1 facilitates cell proliferation and migration in cutaneous malignant melanoma through modulating miR-650/NOTCH1 signaling. Dermatol Ther 2021; 34:e14751. [PMID: 33406278 DOI: 10.1111/dth.14751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Aberrant expression of long non-coding RNA (lncRNA) zinc finger protein, FOG family member 2 antisense RNA 1 (ZFPM2-AS1) has been identified in many tumors, but its role in cutaneous malignant melanoma remains largely obscure. Our present study was intended to unveil the role and potential mechanism of ZFPM2-AS1 in cutaneous malignant melanoma. RT-qPCR was utilized to analyze ZFPM2-AS1 expression in cutaneous malignant melanoma cells. Cell counting kit-8 (CCK-8), colony formation, flow cytometry, and transwell analyses were utilized to assess ZFPM2-AS1 function on cell proliferation, apoptosis, and migration. Luciferase reporter, RNA immunoprecipitation, and RNA-pull down assays were applied to probe the regulatory mechanism of ZFPM2-AS1 in cutaneous malignant melanoma cells. Up-regulation of ZFPM2-AS1 was discovered in cutaneous malignant melanoma cells. ZFPM2-AS1 deletion restrained cell proliferation, migration, and elevated cell apoptosis in cutaneous malignant melanoma. ZFPM2-AS1 regulated notch receptor 1 (NOTCH1) to activate the NOTCH pathway. ZFPM2-AS1 acted as a competing endogenous RNA (ceRNA) to affect NOTCH1 expression via sponging miR-650. Collectively, ZFPM2-AS1 exerted an oncogenic role in cutaneous malignant melanoma progression via targeting miR-650/NOTCH1 signaling. Our study might offer a novel sight for cutaneous malignant melanoma treatment.
Collapse
Affiliation(s)
- Wenli Liu
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoding Hu
- Department of Dermatology, the Second People's Hospital of Changzhi, Changzhi, China
| | - Xin Mu
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiong Tian
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianyuan Gao
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Ge
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Zhang
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Wang X, Tang J, Zhao J, Lou B, Li L. ZFPM2-AS1 promotes the proliferation, migration, and invasion of human non-small cell lung cancer cells involving the JAK-STAT and AKT pathways. PeerJ 2020; 8:e10225. [PMID: 33173620 PMCID: PMC7594634 DOI: 10.7717/peerj.10225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Recent studies have determined that long non-coding RNAs (lncRNAs) are potential prognostic biomarkers for non-small cell lung cancers (NSCLCs). The purpose of this study was to analyze the function and associated pathways of zinc finger protein multitype 2 antisense RNA 1 (ZFPM2-AS1) in NSCLC cells. Methods We used qRT-PCR to analyze ZFPM2-AS1’s transcription level. Its proliferation, migration, and invasion capacities were determined using MTT, colony forming, wound healing, and transwell assays. We additionally analyzed the correlation between ZFPM2 and immune infiltration using the Tumor Immune Estimation Resource (TIMER) database, and the protein expression levels using Western blots. Results We found that ZFPM2-AS1 expression in NSCLC specimens and cell lines was elevated compared to the control group. ZFPM2-AS1 is an oncogene and independent prognostic predictor of poor survival in NSCLCs, and its expression had a positive correlation with tumor size and lymph node metastasis in our clinical data. MTT, colony forming, wound healing, and transwell assays showed a positive correlation between ZFPM2-AS1 expression and the proliferation, migration, and invasion of NSCLC cells in the presence and absence of interferon- (IFN-γ). Using the TIMER database, we hypothesized that ZFPM2 was negatively correlated with ZFPM2-AS1 expression, as well as the immune infiltration levels in lung adenocarcinoma (LUAD). Finally, we found that ZFPM2-AS1 negatively regulated ZFPM2 expression, and had a positive correlation with PD-L1 expression through the JAK-STAT and AKT pathways. Conclusion Our study confirmed that ZFPM2-AS1 promotes the proliferation, migration, and invasion of NSCLC cells via the JAK-STAT and AKT pathways. Further research on the ZFPM2-AS1 pathway regulation mechanism is needed.
Collapse
Affiliation(s)
- Xiwen Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jun Tang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jungang Zhao
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bin Lou
- Department of Hygiene Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Li Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Four Autophagy-Related lncRNAs Predict the Prognosis of HCC through Coexpression and ceRNA Mechanism. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3801748. [PMID: 33102579 PMCID: PMC7568797 DOI: 10.1155/2020/3801748] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/25/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Abnormally expressed long noncoding RNAs (lncRNAs) have been reported to affect the occurrence and progression of hepatocellular carcinoma (HCC) by modulating the autophagy axis. However, none of studies has explored the clinical significance of these autophagy-related lncRNAs in HCC comprehensively. In this study, the RNA-seq, miRNA-seq, and clinical data of normal and HCC patients from the TCGA database and autophagy genes from the Human Autophagy Database were extracted. Subsequently, we screened out 78 differentially expressed autophagy-related lncRNAs, and four prognostic-related lncRNAs (LUCAT1, AC099850.3, ZFPM2-AS1, and AC009005.1) were eventually used to develop the prognostic model. This signature could be regarded as an independent prognostic signature for HCC patients and has the highest prediction efficiency than other clinicopathological factors for the 1-, 3-, and 5-year survival (AUC = 0.764, 0.738, and 0.717, respectively). Additionally, regardless of whether the clinical information is complete for HCC patients, the autophagy-related lncRNA model shows a good predictive power for the overall survival. Importantly, the coexpression network of 4 lncRNAs and 11 autophagy-related genes was constructed. Moreover, based on the bioinformatic analyses, our results found that LUCAT1 and ZFPM2-AS1 may affect the autophagic activity in HCC through the hsa-miR-495-3p/DLC1 and hsa-miR-515-5p/DAPK2 axis, respectively. In conclusion, we establish an effective prognostic model for HCC patients and shed new light on the autophagy-related regulatory mechanisms of the identified lncRNAs.
Collapse
|