1
|
Anvari S, Nikbakht M, Vaezi M, Amini-Kafiabad S, Ahmadvand M. Immune checkpoints and ncRNAs: pioneering immunotherapy approaches for hematological malignancies. Cancer Cell Int 2024; 24:410. [PMID: 39702293 DOI: 10.1186/s12935-024-03596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Hematological malignancies are typically treated with chemotherapy and radiotherapy as the first-line conventional therapies. However, non-coding RNAs (ncRNAs) are a rapidly expanding field of study in cancer biology that influences the growth, differentiation, and proliferation of tumors by targeting immunological checkpoints. This study reviews the results of studies (from 2012 to 2024) that consider the immune checkpoints and ncRNAs in relation to hematological malignancies receiving immunotherapy. This article provides a summary of the latest advancements in immunotherapy for treating hematological malignancies, focusing on the role of immune checkpoints and ncRNAs in the immune response and their capacity for innovative strategies. The paper also discusses the function of immune checkpoints in maintaining immune homeostasis and how their dysregulation can contribute to developing leukemia and lymphoma. Finally, this research concludes with a discussion on the obstacles and future directions in this rapidly evolving field, emphasizing the need for continued research to fully harness the capacity of immune checkpoints and ncRNAs in immunotherapy for hematological malignancies.
Collapse
Affiliation(s)
- Samira Anvari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohsen Nikbakht
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology, Oncology, and Stem Cell Transplantation Research Center Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini-Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Jiang H, Zhang RB, Peng J, Ren L, Wang HD. Disruption of the Hippo pathway promotes the proliferation of childhood acute lymphoblastic leukemia cells, inhibits apoptosis and chemosensitivity. Expert Rev Hematol 2024; 17:269-274. [PMID: 38753450 DOI: 10.1080/17474086.2024.2356255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Despite advancements in chemotherapy and stem cell transplantation, the recurrence and chemoresistance of childhood acute lymphoblastic leukemia (cALL) remain a significant challenge, thus indicating the need for novel therapeutic targets. RESEARCH DESIGN AND METHODS The protein levels of YAP1, p-YAP1, TAZ, and Cyr61 of cALL patients and healthy volunteers were measured by western blot analysis. Then the leukemic cell line SUP-B15 was transfected with sh-YAP1 and pcDNA3.1-YAP1 to knockdown or overexpress YAP1. The viability, chemosensitivity, apoptosis, migration, and invasion of SUP-B15 cells were determined by MTT, flow cytometry, and Transwell assay. RESULTS The cALL patients had higher YAP1, TAZ, and Cyr61 protein expression and lower p-YAP1 protein expression in bone marrow tissues compared with healthy volunteers (p < 0.01). In SUP-B15 cells, YAP1 knockdown upregulated p-YAP1 protein expression (p < 0.01) and downregulated TAZ and Cyr61 protein expression (p < 0.01). In addition, knocking down YAP1 significantly inhibited cell viability, migration, and invasion, and induced apoptosis (p < 0.01). YAP1 knockdown also reduced the IC50 value following treatment with vincristine, daunorubicin, cyclophosphamide, and dexamethasone (p < 0.05). CONCLUSIONS Disruption of the Hippo pathway attenuates the development of cALL by promoting cell proliferation while suppressing apoptosis and drug sensitivity.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Rui-Bo Zhang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Juan Peng
- Department of Blood Transfusion, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Lan Ren
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Heng-Dong Wang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| |
Collapse
|
3
|
Gharbaran R. Insights into the molecular roles of FOXR2 in the pathology of primary pediatric brain tumors. Crit Rev Oncol Hematol 2023; 192:104188. [PMID: 37879492 DOI: 10.1016/j.critrevonc.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Forkhead box gene R2 (FOXR2) belongs to the family of FOX genes which codes for highly conserved transcription factors (TFs) with critical roles in biological processes ranging from development to organogenesis to metabolic and immune regulation to cellular homeostasis. A number of FOX genes are associated with cancer development and progression and poor prognosis. A growing body of evidence suggests that FOXR2 is an oncogene. Studies suggested important roles for FOXR2 in cancer cell growth, metastasis, and drug resistance. Recent studies showed that FOXR2 is overexpressed by a subset of newly identified entities of embryonal tumors. This review discusses the role(s) FOXR2 plays in the pathology of pediatric brain cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Biological Sciences Department, Bronx Community College/City University of New York, 2155 University Avenue, Bronx, NY 10453, USA.
| |
Collapse
|
4
|
Ghazimoradi MH, Karimpour-Fard N, Babashah S. The Promising Role of Non-Coding RNAs as Biomarkers and Therapeutic Targets for Leukemia. Genes (Basel) 2023; 14:131. [PMID: 36672872 PMCID: PMC9859176 DOI: 10.3390/genes14010131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Early-stage leukemia identification is crucial for effective disease management and leads to an improvement in the survival of leukemia patients. Approaches based on cutting-edge biomarkers with excellent accuracy in body liquids provide patients with the possibility of early diagnosis with high sensitivity and specificity. Non-coding RNAs have recently received a great deal of interest as possible biomarkers in leukemia due to their participation in crucial oncogenic processes such as proliferation, differentiation, invasion, apoptosis, and their availability in body fluids. Recent studies have revealed a strong correlation between leukemia and the deregulated non-coding RNAs. On this basis, these RNAs are also great therapeutic targets. Based on these advantages, we tried to review the role of non-coding RNAs in leukemia. Here, the significance of several non-coding RNA types in leukemia is highlighted, and their potential roles as diagnostic, prognostic, and therapeutic targets are covered.
Collapse
Affiliation(s)
- Mohammad H. Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Naeim Karimpour-Fard
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| |
Collapse
|
5
|
A Comprehensive Overview of Recent Advances in Epigenetics in Pediatric Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:cancers14215384. [DOI: 10.3390/cancers14215384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Recent years have brought a novel insight into our understanding of childhood acute lymphoblastic leukemia (ALL), along with several breakthrough treatment methods. However, multiple aspects of mechanisms behind this disease remain to be elucidated. Evidence suggests that leukemogenesis in ALL is widely influenced by epigenetic modifications. These changes include: DNA hypermethylation, histone modification and miRNA alteration. DNA hypermethylation in promoter regions, which leads to silencing of tumor suppressor genes, is a common epigenetic alteration in ALL. Histone modifications are mainly caused by an increased expression of histone deacetylases. A dysregulation of miRNA results in changes in the expression of their target genes. To date, several hundred genes were identified as suppressed by epigenetic mechanisms in ALL. What is promising is that epigenetic alterations in ALL may be used as potential biomarkers for classification of subtypes, predicting relapse and disease progression and assessing minimal residual disease. Furthermore, since epigenetic lesions are potentially reversible, an activation of epigenetically silenced genes with the use of hypomethylating agents or histone deacetylase inhibitors may be utilized as a therapeutic strategy for ALL. The following review summarizes our current knowledge about epigenetic modifications in ALL and describes potential uses of epigenetics in the clinical management of this disease.
Collapse
|
6
|
MicroRNAs and the Diagnosis of Childhood Acute Lymphoblastic Leukemia: Systematic Review, Meta-Analysis and Re-Analysis with Novel Small RNA-Seq Tools. Cancers (Basel) 2022; 14:cancers14163976. [PMID: 36010971 PMCID: PMC9406077 DOI: 10.3390/cancers14163976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary MicroRNAs (miRNAs) have been under the spotlight for the last three decades. These non-coding RNAs seem to be dynamic regulators of mRNA stability and translation, in addition to interfering with transcription. Circulating miRNAs play a critical role in cell-to-cell interplay; therefore, they can serve as disease biomarkers. Meta-analysis of published data revealed that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against acute lymphoblastic leukemia (ALL) in children. Reanalysis of small RNA-seq data with novel tools identified significantly overexpressed members of the miR-128, miR-181, miR-130 and miR-17 families and significantly lower expression of miR-30, miR-24-2 and miR143~145 clusters, miR-574 and miR-618 in pediatric T-ALL cases compared with controls. Inconsistencies in methodology and study designs in most published material preclude reproducibility, and further cohort studies need to be conducted in order to empower novel tools, such as ALLSorts and RNAseqCNV. Abstract MicroRNAs (miRNAs) have been implicated in childhood acute lymphoblastic leukemia (ALL) pathogenesis. We performed a systematic review and meta-analysis of miRNA single-nucleotide polymorphisms (SNPs) in childhood ALL compared with healthy children, which revealed (i) that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against ALL occurrence in children; (ii) no significant association between rs2910164 genotypes in miR-146a and childhood ALL; and (iii) SNPs in DROSHA, miR-449b, miR-938, miR-3117 and miR-3689d-2 genes seem to be associated with susceptibility to B-ALL in childhood. A review of published literature on differential expression of miRNAs in children with ALL compared with controls revealed a significant upregulation of the miR-128 family, miR-130b, miR-155, miR-181 family, miR-210, miR-222, miR-363 and miR-708, along with significant downregulation of miR-143 and miR-148a, seem to have a definite role in childhood ALL development. MicroRNA signatures among childhood ALL subtypes, along with differential miRNA expression patterns between B-ALL and T-ALL cases, were scrutinized. With respect to T-ALL pediatric cases, we reanalyzed RNA-seq datasets with a robust and sensitive pipeline and confirmed the significant differential expression of hsa-miR-16-5p, hsa-miR-19b-3p, hsa-miR-92a-2-5p, hsa-miR-128-3p (ranked first), hsa-miR-130b-3p and -5p, hsa-miR-181a-5p, -2-3p and -3p, hsa-miR-181b-5p and -3p, hsa-miR-145-5p and hsa-miR-574-3p, as described in the literature, along with novel identified miRNAs.
Collapse
|
7
|
MicroRNA expression is deregulated by aberrant methylation in B-cell acute lymphoblastic leukemia mouse model. Mol Biol Rep 2022; 49:1731-1739. [PMID: 35001247 DOI: 10.1007/s11033-021-06982-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The expression of microRNAs (miRNAs) in the serum of B-cell acute lymphoblastic leukemia (B-ALL) patients is abnormal. Nevertheless, the underlying mechanism remains unclear. Recent studies indicate that the methylation state of circulating cell-free DNA (cfDNA) is different between cancer patients and healthy individuals. Therefore, we speculate that abnormal expression of miRNA may be associated with cfDNA methylation. METHODS A green fluorescent protein (GFP) labeled B-ALL transplantation animal model was established to explore the relationship between the miRNA expression and cfDNA methylation of the related gene. Quantitative real-time PCR (qRT-PCR) was used to detect the expression levels of miRNAs. Further, cfDNA methylation levels of the related genes were evaluated through bisulfite sequencing polymerase chain reaction (BSP). RESULTS The expression levels of miR-196b, miR-203, miR-34a-5p, miR-335-3p, miR-34b-5p, miR-615, miR-375-3p and miR-193b-5p in the serum of the model mice were significantly lower than those of the control group (P < 0.05). The methylation level of miR-196b promoter in cfDNA of the model group was significantly lower than that of the control group (P < 0.05), whereas no significant difference was noted in miR-203 promoter. The methylation levels of miR-196b and miR-203 coding region in cfDNA of the model group were significantly higher than those of the control group (P < 0.05). CONCLUSIONS These results showed that CpG island hypermethylation in the miRNA coding region of cfDNA is related to the low expression of miR-196b and miR-203.
Collapse
|
8
|
Wu B, Xue X, Lin S, Tan X, Shen G. LncRNA LINC00115 facilitates lung cancer progression through miR-607/ITGB1 pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:7-16. [PMID: 34643030 DOI: 10.1002/tox.23367] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Dysregulated long noncoding RNAs (lncRNAs) have potential roles in various cancer types. The objective of this study was to investigate the expression and the underlying role of long intergenic nonprotein coding RNA 115 (LINC00115) in lung cancer. The relative expression of LINC00115 and miR-607 in tumor tissues and cells was detected by real-time PCR. After overexpression or knockdown of LINC00115 expression in tumor cells, the changes in the proliferation, migration, and invasion capacities were detected via Counting Kit-8 (CCK-8) assay and transwell assays. The interplay among LINC00115, miR-607, and integrin β1 (ITGB1) was confirmed by bioinformatics analyses and luciferase reporter assay. In addition, tumor cells with LINC00115 knockdown were injected into nude mice to investigate the effect of LINC00115 on tumorigenesis in vivo. LINC00115 was highly expressed in tumor tissues and cells. LINC00115 promoted the malignant properties of tumor cells. Investigation to its molecular mechanism revealed that LINC00115 functioned as a competitive endogenous RNA (ceRNA), regulating the expression of ITGB1 by sponging miR-607 to affect tumor growth. The LINC00115/miR-607/ITGB1 signaling axis might be a novel therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Bin Wu
- Pulmonary and Critical Care Medicine, South China Hospital of Shenzhen University, Shenzhen, China
| | - Xingkui Xue
- Medical Research Center, The People's Hospital of Long hua, Shenzhen, China
| | - Shaoming Lin
- Pulmonary and Critical Care Medicine, The People's Hospital of Long hua, Shenzhen, China
| | - Xing Tan
- Pulmonary and Critical Care Medicine, The People's Hospital of Long hua, Shenzhen, China
| | - Guanle Shen
- Pulmonary and Critical Care Medicine, The People's Hospital of Long hua, Shenzhen, China
| |
Collapse
|
9
|
Chen XG, Dou BH, An JD, Feng S, Liu N, Sheng GY. MAGI2-AS3 restrains proliferation, glycolysis, and triggers apoptosis in acute lymphoblastic leukemia via regulating miR-452-5p/FOXN3 pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:46-52. [PMID: 35656441 PMCID: PMC9118285 DOI: 10.22038/ijbms.2021.58963.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES MAGI2-AS3 is a cancer suppressor gene of multiple malignancies. Acute lymphoblastic leukemia (ALL) is an important type of leukemia that especially occurs in children. Our work evaluated the modulation of MAGI2-AS3 in ALL. MATERIALS AND METHODS qPCR and Western blotting were adopted for detection of target molecular expression. Growth and apoptosis were determined by CCK8 assay and Annexin V/PI staining. Glycolysis was detected by commercial kits. The direct binding between miR-452-5p and MAGI2-AS3 or FOXN3 was assessed by luciferase reporter assay. Tumor growth was measured in nude mice in vivo. RESULTS MAGI2-AS3 was down-regulated in ALL. Enforced expression of MAGI2-AS3 inhibited growth and glycolysis while promoting apoptosis of ALL cells. Moreover, MAGI2-AS3 up-regulated FOXN3 via sponging miR-452-5p. FOXN3 depletion abrogated MAGI2-AS3-mediated anti-cancer action. More importantly, MAGI2-AS3 repressed ALL cell growth in nude mice through regulation of miR-452-5p/FOXN3. CONCLUSION MAGI2-AS3 inhibits ALL development via modulating miR-452-5p/FOXN3.
Collapse
Affiliation(s)
- Xiao-Guang Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, P.R. China
| | - Bing-Hua Dou
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, P.R. China
| | - Jin-Dou An
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, P.R. China
| | - Song Feng
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, P.R. China
| | - Na Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, P.R. China
| | - Guang-Yao Sheng
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, P.R. China,Corresponding author: Guang-Yao Sheng. Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe Road, Zhengzhou 450052, Henan Province, P.R. China. Tel: +86-13633812950;
| |
Collapse
|
10
|
Deng W, Pan M, Zhu S, Chao R, Wang L. Emerging roles of microRNAs in acute lymphoblastic leukemia and their clinical prospects. Expert Rev Hematol 2021; 14:987-992. [PMID: 34784832 DOI: 10.1080/17474086.2021.2007763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Targeted therapy with microRNAs (miRNAs) has been a significant challenge in recent years. Studying the role and mechanism through which miRNAs regulate various cancer processes is very critical in cancer treatment, including acute lymphoblastic leukemia (ALL). AREAS COVERED This review summarizes the diverse roles of miRNAs in ALL and provides new perspectives in miRNA-based therapeutic strategies. EXPERT OPINION MiRNAs belong to a kind of endogenous non-coding small RNA with the length of 19 ~ 25 nucleotides. They inhibit the expression of target genes and participate in almost all essential physiological processes such as cell proliferation, apoptosis, differentiation, and inflammatory responses. Many miRNAs are abnormally expressed in tumor cells, suggesting that they might be related to the occurrence and development of tumor. ALL is a common hematological malignancy in children. Its clinical manifestation, morphology, immunophenotype, and genetic characteristics are highly heterogeneous. A number of miRNAs have been found to be abnormally expressed in ALL and related to the biological characteristics, clinical features, diagnosis, and treatment in ALL patients. The understanding of miRNAs could help reveal ALL pathogenesis and identify accurate molecular markers for ALL diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Wei Deng
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Ming Pan
- Department of Hematology, Wuwei People's Hospital, Wuwei, Gansu, China
| | - Shengdong Zhu
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Rong Chao
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Li Wang
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| |
Collapse
|