1
|
Ma X, Zhu X, Zou M, Zhang J, Huang L, Jiang S, Zhi Y. Expression of CXCL8 and its relationship with prognosis in patients with non-small cell lung cancer. Am J Cancer Res 2024; 14:2934-2945. [PMID: 39005665 PMCID: PMC11236764 DOI: 10.62347/ljdq3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/14/2024] [Indexed: 07/16/2024] Open
Abstract
To determine the expression of chemokine 8 (CXCL8) in non-small cell lung cancer (NSCLC) patients and analyze its correlation with tumor characteristics and patient prognosis. We conducted a retrospective analysis of 149 NSCLC patients treated between January 2016 and April 2018, measuring serum CXCL8 expression upon admission or prior to treatment. The clinical characteristics, including lymph node metastasis and staging, based on CXCL8 expression levels, were analyzed. Receiver Operating Characteristic (ROC) curves was drawn to assess its predictive value for lymph node metastasis and staging in NSCLC patients. Furthermore, the Kaplan-Meier curve was plotted to assess the impact of CXCL8 on 5-year survival in NSCLC Patients. NSCLC patients exhibited significantly higher serum CXCL8 levels than those with benign tumors (P<0.001), with the high CXCL8 expression group showing a higher incidence of lymph node metastasis or stage III NSCLC (P<0.01). CXCL8 was identified as an independent predictor of lymph node metastasis (AUC=0.730) and higher TNM stage (AUC=0.708), as well as a validated biomarker for predicting five-year survival in NSCLC patients. This study highlights the strong association between CXCL8 expression in NSCLC and patient prognosis, particularly regarding lymph node metastasis and clinical staging, suggesting the need for further research to explore CXCL8's specific role in the tumor microenvironment and its impact on different NSCLC subtypes.
Collapse
Affiliation(s)
- Xuan Ma
- Department of Respiratory Medicine, Suzhou BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University Suzhou 215010, Jiangsu, China
| | - Xuean Zhu
- Department of General Surgery, Pingluo County People's Hospital Shizuishan 753000, Ningxia Hui Autonomous Region, China
| | - Mingli Zou
- Department of Respiratory Medicine, Suzhou BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University Suzhou 215010, Jiangsu, China
| | - Jingjing Zhang
- Department of Respiratory Medicine, Suzhou BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University Suzhou 215010, Jiangsu, China
| | - Lili Huang
- Department of Respiratory Medicine, Suzhou BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University Suzhou 215010, Jiangsu, China
| | - Shasha Jiang
- Department of Respiratory Medicine, Suzhou BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University Suzhou 215010, Jiangsu, China
| | - Yanan Zhi
- Department of Thoracic Surgery, Xi'an International Medical Center Hospital Xi'an 710100, Shaanxi, China
| |
Collapse
|
2
|
Chang CM, Chang CC, Lam HYP, Peng SY, Lai YH, Hsiang BD, Liao YY, Hsu HJ, Jiang SJ. Therapeutic Peptide RF16 Derived from CXCL8 Inhibits MDA-MB-231 Cell Invasion and Metastasis. Int J Mol Sci 2023; 24:14029. [PMID: 37762330 PMCID: PMC10531501 DOI: 10.3390/ijms241814029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Interleukin (IL)-8 plays a vital role in regulating inflammation and breast cancer formation by activating CXCR1/2. We previously designed an antagonist peptide, (RF16), to inhibits the activation of downstream signaling pathways by competing with IL-8 in binding to CXCR1/2, thereby inhibiting IL-8-induced chemoattractant monocyte binding. To evaluate the effect of the RF16 peptide on breast cancer progression, triple-negative MDA-MB-231 and ER-positive MCF-7 breast cancer cells were used to investigate whether RF16 can inhibit the IL-8-induced breast cancer metastasis. Using growth, proliferation, and invasiveness assays, the results revealed that RF16 reduced cell proliferation, migration, and invasiveness in MDA-MB-231 cells. The RF16 peptide also regulated the protein and mRNA expressions of epithelial-mesenchymal transition (EMT) markers in IL-8-stimulated MDA-MB-231 cells. It also inhibited downstream IL-8 signaling and the IL-8-induced inflammatory response via the mitogen-activated protein kinase (MAPK) and Phosphoinositide 3-kinase (PI3K) pathways. In the xenograft tumor mouse model, RF16 synergistically reinforces the antitumor efficacy of docetaxel by improving mouse survival and retarding tumor growth. Our results indicate that RF16 significantly inhibited IL-8-stimulated cell growth, migration, and invasion in MDA-MB-231 breast cancer cells by blocking the activation of p38 and AKT cascades. It indicated that the RF16 peptide may serve as a new supplementary drug for breast cancer.
Collapse
Affiliation(s)
- Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Hualien 97004, Taiwan;
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Yi-Hsuan Lai
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
| | - Bi-Da Hsiang
- Department of Molecular Biology and Human Genetics, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Yu-Yi Liao
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Hao-Jen Hsu
- Department of Biomedical Sciences and Engineering, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| |
Collapse
|
3
|
Niu Y, Han X, Zeng Y, Nanding A, Bai Q, Guo S, Hou Y, Yu Y, Zhang Q, Li X. The significance of spread through air spaces in the prognostic assessment model of stage I lung adenocarcinoma and the exploration of its invasion mechanism. J Cancer Res Clin Oncol 2023; 149:7125-7138. [PMID: 36881149 DOI: 10.1007/s00432-023-04619-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE Spread through air spaces (STAS) is a crucial invasive mode of lung cancer and has been shown to be associated with early recurrence and metastasis. We aimed to develop a prognostic risk assessment model for stage I lung adenocarcinoma based on STAS and other pathological features and to explore the potential relationship between CXCL-8, Smad2, Snail, and STAS. METHODS 312 patients who underwent surgery at Harbin Medical University Cancer Hospital with pathologically diagnosed stage I lung adenocarcinoma were reviewed in the study. STAS and other pathological features were identified by H&E staining, and a prognostic risk assessment model was established. The expression levels of CXCL8, Smad2, and Snail were determined by immunohistochemistry. RESULTS The nomogram was established based on age, smoking history, STAS, tumor lymphocyte infiltration, tissue subtype, nuclear grade, and tumor size. The C-index for DFS was (training set 0.84 vs validation set 0.77) and for OS was (training set 0.83 vs validation set 0.78). Decision curve analysis showed that the model constructed has a better net benefit than traditional reporting. The prognostic risk score validated the risk stratification value for stage I lung adenocarcinoma. STAS was an important prognostic factor associated with stronger invasiveness and higher expression of CXCL8, Smad2, and Snail. CXCL8 was associated with poorer DFS and OS. CONCLUSIONS We developed and validated a survival risk assessment model and the prognostic risk score formula for stage I lung adenocarcinoma. Additionally, we found that CXCL8 could be used as a potential biomarker for STAS and poor prognosis, and its mechanism may be related to EMT.
Collapse
Affiliation(s)
- YangYang Niu
- Department of Pathology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - XinHao Han
- Department of Biostatistics, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yuan Zeng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Abiyasi Nanding
- Department of Pathology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Qiang Bai
- Department of Pathology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - SaiNan Guo
- Department of Pathology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - YaLi Hou
- Department of Pathology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| | - QiuJu Zhang
- Department of Biostatistics, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| | - XiaoMei Li
- Department of Pathology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
4
|
Dai D, Wu D, Ni R, Li P, Tian Z, Shui Y, Hu H, Wei Q. Novel insights into the progression and prognosis of the calpain family members in hepatocellular carcinoma: a comprehensive integrated analysis. Front Mol Biosci 2023; 10:1162409. [PMID: 37503539 PMCID: PMC10368982 DOI: 10.3389/fmolb.2023.1162409] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Objectives: The goal of our bioinformatics study was to comprehensively analyze the association between the whole calpain family members and the progression and prognosis of hepatocellular carcinoma (HCC). Methods: The data were collected from The Cancer Genome Atlas (TCGA). The landscape of the gene expression, copy number variation (CNV), mutation, and DNA methylation of calpain members were analyzed. Clustering analysis was performed to stratify the calpain-related groups. The least absolute shrinkage and selection operator (LASSO)-based Cox model was used to select hub survival genes. Results: We found 14 out of 16 calpain members expressed differently between tumor and normal tissues of HCC. The clustering analyses revealed high- and low-risk calpain groups which had prognostic difference. We found the high-risk calpain group had higher B cell infiltration and higher expression of immune checkpoint genes HAVCR2, PDCD1, and TIGHT. The CMap analysis found that the histone deacetylase (HDAC) inhibitor trichostatin A and the PI3K-AKT-mTOR pathway inhibitors LY-294002 and wortmannin might have a therapeutic effect on the high-risk calpain group. The DEGs between calpain groups were identified. Subsequent univariate Cox analysis of each DEG and LASSO-based Cox model obtained a calpain-related prognostic signature. The risk score model of this signature showed good ability to predict the overall survival of HCC patients in TCGA datasets and external validation datasets from the Gene Expression Omnibus database and the International Cancer Genome Consortium database. Conclusion: We found that calpain family members were associated with the progression, prognosis, and drug response of HCC. Our results require further studies to confirm.
Collapse
Affiliation(s)
- Dongjun Dai
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Dehao Wu
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Runliang Ni
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Li
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhifeng Tian
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongjie Shui
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanguang Hu
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Zeng Y, Zhou L, Jia D, Pan B, Li X, Yu Y. Comprehensive analysis for clarifying transcriptomics landscapes of spread through air spaces in lung adenocarcinoma. Front Genet 2022; 13:900864. [PMID: 36072669 PMCID: PMC9441605 DOI: 10.3389/fgene.2022.900864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022] Open
Abstract
Patients with spread through air spaces (STAS) have worse postoperative survival and a higher recurrence rate in lung adenocarcinoma, even in the earliest phases of the disease. At present, the molecular pathogenesis of STAS is not well understood. Therefore, to illustrate the underlying pathogenic mechanism of STAS, we accomplished a comprehensive analysis of a microarray dataset of STAS. Differential expression analysis revealed 841 differentially expressed genes (DEGs) between STAS_positive and STAS_negative groups. Additionally, we acquired two hub genes associated with survival. Gene set variation analysis (GSVA) confirmed that the main differential signaling pathways between the two groups were hypoxia VHL targets, PKC, and pyrimidine metabolism pathways. Analysis of immune activity showed that the increased expression of MHC-class-Ⅰ was observed in the STAS_positive group. These findings provided novel insights for a better knowledge of pathogenic mechanisms and potential therapeutic markers for STAS treatment.
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lingli Zhou
- Department of Respiratory Medicine, Suizhou Hospital, Hubei University of Medicine, Hubei, China
| | - Dexin Jia
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bo Pan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaomei Li
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
6
|
Pennel KAF, Quinn JA, Nixon C, Inthagard J, van Wyk HC, Chang D, Rebus S, Hay J, Maka NN, Roxburgh CSD, Horgan PG, McMillan DC, Park JH, Roseweir AK, Steele CW, Edwards J. CXCL8 expression is associated with advanced stage, right sidedness, and distinct histological features of colorectal cancer. J Pathol Clin Res 2022; 8:509-520. [PMID: 35879507 PMCID: PMC9535100 DOI: 10.1002/cjp2.290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/09/2022] [Accepted: 06/23/2022] [Indexed: 12/29/2022]
Abstract
CXCL8 is an inflammatory chemokine elevated in the colorectal cancer (CRC) tumour microenvironment. CXCR2, the major receptor for CXCL8, is predominantly expressed by neutrophils. In the cancer setting, CXCL8 plays important roles in neutrophil chemotaxis, facilitating angiogenesis, invasion, and metastasis. This study aimed to assess the spatial distribution of CXCL8 mRNA expression in CRC specimens, explore associations with clinical characteristics, and investigate the underlying biology of aberrant CXCL8 levels. CXCR2 expression was also assessed in a second cohort of unique CRC primary tumours and synchronously resected matched liver metastases. A previously constructed tissue microarray consisting of a cohort of stage I-IV CRC patients undergoing surgical resection with curative intent (n = 438) was probed for CXCL8 via RNAscope®. Analysis was performed using HALO® digital pathology software to quantify expression in the tumour and stromal compartments. Scores were assessed for association with clinical characteristics. Mutational analyses were performed on a subset of these patients to determine genomic differences in patients with high CXCL8 expression. A second cohort of stage IV CRC patients with primary and matched metastatic liver tumours was stained via immunohistochemistry for CXCR2, and scores were assessed for clinical significance. CXCL8 expression within the stromal compartment was associated with reduced cancer-specific survival in the first cohort (p = 0.035), and this relationship was potentiated in right-sided colon cancer cases (p = 0.009). High CXCL8 within the stroma was associated with driving a more stromal-rich phenotype and the presence of metastases. When stromal CXCL8 scores were combined with tumour-infiltrating macrophage counts or systemic neutrophil counts, patients classified as high for both markers had significantly poorer prognosis. CXCR2+ immune cell infiltration was associated with increased stromal invasion in liver metastases (p = 0.037). These data indicate a role for CXCL8 in driving unfavourable tumour histological features and promoting metastases. This study suggests that inhibiting CXCL8/CXCR2 should be investigated in patients with right-sided colonic disease and stroma-rich tumours.
Collapse
Affiliation(s)
- Kathryn AF Pennel
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Jean A Quinn
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | | | - Jitwadee Inthagard
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Hester C van Wyk
- Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - David Chang
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK,Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Selma Rebus
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - GPOL Group
- Glasgow Precision Oncology Laboratory, Wolfson Wohl Cancer Research Centre, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Jennifer Hay
- Glasgow Tissue Research FacilityQueen Elizabeth University HospitalGlasgowUK
| | - Noori N Maka
- Department of PathologyQueen Elizabeth University HospitalGlasgowUK
| | - Campbell SD Roxburgh
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK,Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Paul G Horgan
- Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Donald C McMillan
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK,Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - James H Park
- Department of SurgeryQueen Elizabeth University HospitalGlasgowUK
| | | | - Colin W Steele
- CRUK Beatson InstituteGlasgowUK,Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
7
|
Liu M, Zhao Q, Zheng X, Yang L, Zhao Y, Li X, Wu M. Transcriptome changes in ERGIC3-knockdown hepatocellular carcinoma cells: ERGIC3 is a novel immune function related gene. PeerJ 2022; 10:e13369. [PMID: 35602902 PMCID: PMC9121864 DOI: 10.7717/peerj.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/11/2022] [Indexed: 01/13/2023] Open
Abstract
Objective The expression of ERGIC3 is increased in a variety of tumors and promotes the growth and metastasis of liver cancer, but the molecular mechanism needs to be further studied.In this study, we aimed to analyze the molecular mechanism of ERGIC3 regulating the proliferation of human hepatocellular carcinoma (HCC) SMMC-7721 cells using transcriptomics. Methods ERGIC3 was knocked down in SMMC-7721 cells by RNAi technique, and the expression of ERGIC3 was detected by Q-RT-PCR and Western Blot. RNA sequencing was performed in the Illumina HiSeq platform in the control group and the ERGIC3i group and bioinformatics methods were selected to analyze the data. Results The expression of ERGIC3 was reduced to 10% in SMMC-7721 cells by RNAi technique, and 176 genes were up-regulated and 34 genes were down-regulated in ERGIC3i group compared with the control group. Analysis of the pathways and biological processes that enrich the function of differentially expressed genes showed thatthese differentially expressed genes were mainly involved in vesicular transport, growth factors, PI3K-Akt, NOD-like, Jak-STAT, NF-kappa B and other protein kinase-coupled receptors mediated signal transduction pathways, tumor immune response, collagen-integrin receptor-actin axis, and miRNA pathways. More importantly, most of the significantly altered pathways were related to immunity. ERGIC3 may be a key immune-related gene. Conclusion Based on the transcriptomic analysis, the mechanism of ERGIC3 promoting the growth of HCC is link with the transport of growth factor receptor, cytokine receptor and collagen. Then it is involved in signal transduction pathways mediated by protein kinase-coupled receptors, PI3K-Akt, NOD-like, Jak-STAT and NF-kappa B. In particular, the mechanism is also involved in the ERGIC3-dependent immune pathways. ERGIC3 is a potential target for prevention and treatment of HCC.
Collapse
Affiliation(s)
- Mengyuan Liu
- Zunyi Medical University, Department of Genetics, Guizhou, China,Special Key Laboratory of Oral Disease Research and High Education Institute in Guizhou Province, Guizhou, China
| | - Qiurong Zhao
- Zunyi Medical University, Department of Genetics, Guizhou, China
| | - Xiang Zheng
- Zunyi Medical University, Department of Genetics, Guizhou, China
| | - Lei Yang
- Zunyi Medical University, Department of Genetics, Guizhou, China
| | - Yanyu Zhao
- Zunyi Medical University, Department of Genetics, Guizhou, China
| | - Xueying Li
- Zunyi Medical University, Department of Genetics, Guizhou, China
| | - Mingsong Wu
- Special Key Laboratory of Oral Disease Research and High Education Institute in Guizhou Province, Guizhou, China
| |
Collapse
|
8
|
The CBL-LSD1-CXCL8 axis regulates methionine metabolism in glioma. Cytokine 2022; 151:155789. [PMID: 34998158 DOI: 10.1016/j.cyto.2021.155789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022]
Abstract
Gliomas are the most frequent type of brain tumors, with a high mortality rate and a lack of efficient targeted therapy. Methionine is an essential amino acid, and restriction of methionine in the diet has been found to prevent metabolic diseases and aging, inhibit cancer growth and improve cancer treatment. However, mechanisms of action by which methionine metabolism affects gliomas remain largely unclear. The present study found that methionine starvation of glioma cells significantly increased the expression of CXCL8. Mechanistically, E3 ubiquitin ligase was found to mediate the ubiquitinated degradation of the histone demethylase LSD1 via CBL, reducing LSD1 protein stability and, enhancing H3K4me1 modification of the CXCL8 gene. CXCL8 was found to be involved in regulating the reprogramming of glycerophospholipid metabolism, enabling it to respond to a methionine-deprived environment. CXCL8 expression was significantly higher in glioma than in normal brain tissue samples, with elevated CXCL8 being associated with poor prognosis. In summary, CBL-mediated degradation of LSD1 acts as an anti-braking system and serves as a quick adaptive mechanism for re-remodeling epigenetic modifications. This, in turn, promotes cell proliferation, even in a methionine-restricted environment. Taken together, these findings indicate that the CBL/LSD1/CXCL8 axis is a novel mechanistic connection linking between methionine metabolism, histone methylation and glycerophospholipid reprogramming in the tumor microenvironment.
Collapse
|
9
|
Wang J, Wang C, Yang L, Li K. Identification of the critical genes and miRNAs in hepatocellular carcinoma by integrated bioinformatics analysis. Med Oncol 2022; 39:21. [PMID: 34982264 DOI: 10.1007/s12032-021-01622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a global health problem with complex etiology and pathogenesis. Microarray data are increasingly being used as a novel and effective method for cancer pathogenesis analysis. An integrative analysis of genes and miRNA for HCC was conducted to unravel the potential prognosis of HCC. Two gene microarray datasets (GSE89377 and GSE101685) and two miRNA expression profiles (GSE112264 and GSE113740) were obtained from Gene Expression Omnibus database. A total of 177 differently expressed genes (DEGs) and 80 differently expressed miRNAs (DEMs) were screened out. Functional enrichment of DEGs was proceeded by Clue GO and these genes were significantly enriched in the chemical carcinogenesis pathway. A protein-protein interaction network was then established on the STRING platform, and ten hub genes (CDC20, TOP2A, ASPM, NCAPG, AURKA, CYP2E1, HMMR, PRC1, TYMS, and CYP4A11) were visualized via Cytoscape software. Then, a miRNA-target network was established to identify the hub dysregulated miRNA. A key miRNA (hsa-miR-124-3p) was filtered. Finally, the miRNA-target-transcription factor network was constructed for hsa-miR-124-3p. The network for hsa-miR-124-3p included two transcription factors (TFs) and five targets. These identified DEGs and DEMs, TFs, targets, and regulatory networks may help advance our understanding of the underlying pathogenesis of HCC.
Collapse
Affiliation(s)
- Jun Wang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China.
| | - Chuyan Wang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China
| | - Liuqing Yang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China
| | - Kexin Li
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China
| |
Collapse
|
10
|
Reyimu A, Chen Y, Song X, Zhou W, Dai J, Jiang F. Identification of latent biomarkers in connection with progression and prognosis in oral cancer by comprehensive bioinformatics analysis. World J Surg Oncol 2021; 19:240. [PMID: 34384424 PMCID: PMC8361649 DOI: 10.1186/s12957-021-02360-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Oral cancer (OC) is a common and dangerous malignant tumor with a low survival rate. However, the micro level mechanism has not been explained in detail. METHODS Gene and miRNA expression micro array data were extracted from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) and miRNAs (DE miRNAs) were identified by R software. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of genes and genomes (KEGG) pathway analysis were used to assess the potential molecular mechanisms of DEGs. Cytoscape software was utilized to construct protein-protein interaction (PPI) network and miRNA-gene network. Central genes were screened out with the participation of gene degree, molecular complex detection (MCODE) plugin, and miRNA-gene network. Then, the identified genes were checked by The Cancer Genome Atlas (TCGA) gene expression profile, Kaplan-Meier data, Oncomine, and the Human Protein Atlas database. Receiver operating characteristic (ROC) curve was drawn to predict the diagnostic efficiency of crucial gene level in normal and tumor tissues. Univariate and multivariate Cox regression were used to analyze the effect of dominant genes and clinical characteristics on the overall survival rate of OC patients. RESULTS Gene expression data of gene expression profiling chip(GSE9844, GSE30784, and GSE74530) were obtained from GEO database, including 199 tumor and 63 non-tumor samples. We identified 298 gene mutations, including 200 upregulated and 98 downregulated genes. GO functional annotation analysis showed that DEGs were enriched in extracellular structure and extracellular matrix containing collagen. In addition, KEGG pathway enrichment analysis demonstrated that the DEGs were significantly enriched in IL-17 signaling pathway and PI3K-Akt signaling pathway. Then, we detected three most relevant modules in PPI network. Central genes (CXCL8, DDX60, EIF2AK2, GBP1, IFI44, IFI44L, IFIT1, IL6, MMP9,CXCL1, CCL20, RSAD2, and RTP4) were screened out with the participation of MCODE plugin, gene degree, and miRNA-gene network. TCGA gene expression profile and Kaplan-Meier analysis showed that high expression of CXCL8, DDX60, IL6, and RTP4 was associated with poor prognosis in OC patients, while patients with high expression of IFI44L and RSAD2 had a better prognosis. The elevated expression of CXCL8, DDX60, IFI44L, RSAD2, and RTP44 in OC was verified by using Oncomine database. ROC curve showed that the mRNA levels of these five genes had a helpful diagnostic effect on tumor tissue. The Human Protein Atlas database showed that the protein expressions of DDX60, IFI44L, RSAD2, and RTP44 in tumor tissues were higher than those in normal tissues. Finally, univariate and multivariate Cox regression showed that DDX60, IFI44L, RSAD2, and RTP44 were independent prognostic indicators of OC. CONCLUSION This study revealed the potential biomarkers and relevant pathways of OC from publicly available GEO database, and provided a theoretical basis for elucidating the diagnosis, treatment, and prognosis of OC.
Collapse
Affiliation(s)
- Abdusemer Reyimu
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China
| | - Ying Chen
- Department of Medical Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Xudong Song
- Department of Gastrointestinal Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Wubi Zhou
- Department of Pathology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China.
| | - Jingjing Dai
- Department of Medical Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China.
| | - Feng Jiang
- Department of Stomatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China.
| |
Collapse
|
11
|
Ko P, Choi JH, Song S, Keum S, Jeong J, Hwang YE, Kim JW, Rhee S. Microtubule Acetylation Controls MDA-MB-231 Breast Cancer Cell Invasion through the Modulation of Endoplasmic Reticulum Stress. Int J Mol Sci 2021; 22:ijms22116018. [PMID: 34199510 PMCID: PMC8199658 DOI: 10.3390/ijms22116018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/27/2022] Open
Abstract
During aggressive cancer progression, cancer cells adapt to unique microenvironments by withstanding various cellular stresses, including endoplasmic reticulum (ER) stress. However, the mechanism whereby cancer cells overcome the ER stress to survive remains to be elucidated. Herein, we demonstrated that microtubule acetylation in cancer cells grown on a stiff matrix promotes cancer progression by preventing excessive ER stress. Downregulation of microtubule acetylation using shRNA or CRSIPR/Cas9 techniques targeting ATAT1, which encodes α-tubulin N-acetyltransferase (αTAT1), resulted in the upregulation of ER stress markers, changes in ER morphology, and enhanced tunicamycin-induced UPR signaling in cancer cells. A set of genes involved in cancer progression, especially focal adhesion genes, were downregulated in both ATAT1-knockout and tunicamycin-treated cells, whereas ATAT1 overexpression restored the gene expression inhibited by tunicamycin. Finally, the expression of ATAT1 and ER stress marker genes were negatively correlated in various breast cancer types. Taken together, our results suggest that disruption of microtubule acetylation is a potent therapeutic tool for preventing breast cancer progression through the upregulation of ER stress. Moreover, ATAT1 and ER stress marker genes may be useful diagnostic markers in various breast cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sangmyung Rhee
- Correspondence: ; Tel.: +82-2-820-5818; Fax: +82-2-825-5206
| |
Collapse
|
12
|
Wang J, Wang CY. Integrated miRNA and mRNA omics reveal the anti-cancerous mechanism of Licochalcone B on Human Hepatoma Cell HepG2. Food Chem Toxicol 2021; 150:112096. [PMID: 33647349 DOI: 10.1016/j.fct.2021.112096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022]
Abstract
To unravel the potential of Licochalcone B as an anti-tumour phytochemical agent and evaluate its underlying mechanisms, we analyzed the mRNAs and miRNAs expression profiles of HepG2 cells in response to Licochalcone B (120 μM). mRNA and miRNA expression libraries were conducted and functional analysis for differential expression mRNAs was carried out utilizing Clue GO. We found 763 Licochalcone B -responsive differently expressed genes, among them, 572 mRNAs were up-regulated and 191 mRNAs were down-regulated, many of which were related to the MAPK signaling pathway. A protein-protein interaction network was constructed to discover the hub genes, and IL6, FOS, JUN, NOTCH1, UBC, UBB, CXCL8, CDKN1A, IL1B, ATF3, and GATA3 genes were screened out. Additionally, miRNAs engaged in Licochalcone B -mediated regulation on HepG2 cells were also studied. 85 differential expression miRNAs were identified, including 39 up-regulated miRNAs and 46 down-regulated miRNAs. Co-expression of miRNA-mRNA network was created and two key miRNAs (hsa-miR-29b-3p and hsa-miR-96-5p) were identified. These recognized key genes, miRNA, and the miRNA-mRNA regulatory network may provide clues to understand the molecular mechanism of Licochalcone B as an apoptotic inducer which may offer hint for its application as a functional food component.
Collapse
Affiliation(s)
- Jun Wang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China.
| | - Chu-Yan Wang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China.
| |
Collapse
|
13
|
Gong J, Li R, Chen Y, Zhuo Z, Chen S, Cao J, Zhang Q, Chong Y, Hu B. HCC subtypes based on the activity changes of immunologic and hallmark gene sets in tumor and nontumor tissues. Brief Bioinform 2021; 22:6123970. [PMID: 33515024 DOI: 10.1093/bib/bbaa427] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
The prognostic role of adjacent nontumor tissue in hepatocellular carcinoma (HCC) patients is still not clear. The activity changes of immunologic and hallmark gene sets in adjacent nontumor tissues may substantially impact on prognosis by affecting proliferation of liver cells and colonization of circulating tumor cells after HCC treatment measures such as hepatectomy. We aimed to identify HCC subtypes and prognostic gene sets based on the activity changes of gene sets in tumor and nontumor tissues, to improve patient outcomes. We comprehensively revealed the activity changes of immunologic and hallmark gene sets in HCC and nontumor samples by gene set variation analysis (GSVA), and identified three clinically relevant subtypes of HCC by nonnegative matrix factorization method (NMF). Patients with subtype 1 had good overall survival, whereas those with subtype 2 and subtype 3 had poor prognosis. Patients with subtype 1 in the validation group also tended to live longer. We also identified three prognostic gene sets in tumor and four prognostic gene sets in nontumor by least absolute shrinkage and selection operator method (LASSO). Interestingly, functional enrichment analysis revealed that in nontumor tissues, genes from four gene sets correlated with immune reaction, cell adhesion, whereas in tumor tissue, genes from three gene sets closely correlated with cell cycle. Our results offer new insights on accurately evaluating prognosis-the important role of gene sets in both tumor and adjacent nontumor tissues, suggesting that when selecting for HCC treatment modality, changes in tumor and nontumor tissues should also be considered, especially after hepatectomy.
Collapse
Affiliation(s)
- Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou 510630, China
| | - Yaqiong Chen
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Shuru Chen
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Jing Cao
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Qi Zhang
- Cell-Gene Therapy Translational Medicine Research Center, Key Laboratory of Liver Disease of Guangdong Province, Guangzhou, China
| | - Yutian Chong
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Bo Hu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|