1
|
Campo A, Aliquò F, Velletri T, Scuruchi M, Avenoso A, Campo GM, D'Ascola A, Campo S, De Pasquale M. Involvement of selected circulating ncRNAs in the regulation of cognitive dysfunction induced by anesthesia. Gene 2024; 928:148806. [PMID: 39074643 DOI: 10.1016/j.gene.2024.148806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Post-operative cognitive dysfunction (POCD) refers to the functional impairment of the nervous system caused by prolonged exposure to anesthetics. It is known that prolonged exposure to anesthetics may increase the risk for the development of several cognitive impairments. The drugs used to induce general anesthesia are generally safe, owing to the CNS's direct and/or indirect self-protective activity against drug-induced damages. Non-coding RNAs have recently started to gain attention to better understand the mechanism of gene regulation correlated to cellular physiology and pathology. In order to provide new insights for the neuroprotective function of highly expressed ncRNAs in the central nervous system, we investigated their expression profile in the circulating exosomes of patients exposed to anesthesia vs healthy controls. The experimental design envisaged the recruitment of 30 adult patients undergoing general anesthesia and healthy controls. The effects of anesthetics have been evaluated on miR-34a and miR-124, on the lncRNAs MALAT-1, HOTAIR, GAS5, BLACAT1, HULC, PANDA, and on YRNAs. NcRNAs miR-34a, miR-124, MALAT-1, HOTAIR, GAS5, BLACAT1, and YRNA1 are significantly overexpressed following anesthesia, while YRNA5 is significantly down regulated. Some of them have neuroprotective function, while other correlate with neurological dysfunctions. Our data suggests that, during anesthesia, the toxic action of some non-coding RNAs could be compensated by other non-coding RNAs, both synthesized by the CNS or also transported into neurons from other tissues. It is reasonable to suppose a mutual action of these molecules likely to secure the CNS from anesthetics, that drive a convoluted cascade of ncRNA-dependent biological counter-responses. Our findings are novel in the field of brain dysfunction, indicating that some of the analyzed ncRNAs, although several of their functions still need to be addressed, could be suggested as potential biomarkers and therapeutic targets in post-operative cognitive dysfunction-related processes.
Collapse
Affiliation(s)
- Adele Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Federica Aliquò
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Tania Velletri
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Giuseppe Maurizio Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Maria De Pasquale
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| |
Collapse
|
2
|
Baldrighi GN, Cavagnola R, Calzari L, Sacco D, Costantino L, Ferrara F, Gentilini D. Investigating the Epigenetic Landscape of Major Depressive Disorder: A Genome-Wide Meta-Analysis of DNA Methylation Data, Including New Insights into Stochastic Epigenetic Mutations and Epivariations. Biomedicines 2024; 12:2181. [PMID: 39457495 PMCID: PMC11505239 DOI: 10.3390/biomedicines12102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Major depressive disorder (MDD) is a mental health condition that can severely impact patients' social lives, leading to withdrawal and difficulty in maintaining relationships. Environmental factors such as trauma and stress can worsen MDD by interacting with genetic predispositions. Epigenetics, which examines changes in gene expression influenced by the environment, may help identify patterns linked to depression. This study aimed to explore the epigenetic mechanisms behind MDD by analysing six public datasets (n = 1125 MDD cases, 398 controls in blood; n = 95 MDD cases, 96 controls in brain tissues) from the Gene Expression Omnibus. Methods: As an innovative approach, two meta-analyses of DNA methylation patterns were conducted alongside an investigation of stochastic epigenetic mutations (SEMs), epigenetic age acceleration, and rare epivariations. Results: While no significant global methylation differences were observed between MDD cases and controls, hypomethylation near the SHF gene (brain-specific probe cg25801113) was consistently found in MDD cases. SEMs revealed a gene-level burden in MDD, though epigenetic age acceleration was not central to the disorder. Additionally, 51 rare epivariations were identified in blood tissue and 1 in brain tissue linked to MDD. Conclusions: The study emphasises the potential role of rare epivariations in MDD's epigenetic regulation but calls for further research with larger, more diverse cohorts to confirm these findings.
Collapse
Affiliation(s)
- Giulia Nicole Baldrighi
- Department of Brain and Behavioral Sciences, Università di Pavia, 27100 Pavia, Italy; (G.N.B.); (R.C.); (D.S.)
| | - Rebecca Cavagnola
- Department of Brain and Behavioral Sciences, Università di Pavia, 27100 Pavia, Italy; (G.N.B.); (R.C.); (D.S.)
| | - Luciano Calzari
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy;
| | - Davide Sacco
- Department of Brain and Behavioral Sciences, Università di Pavia, 27100 Pavia, Italy; (G.N.B.); (R.C.); (D.S.)
- Medical Genetics Laboratory, Centro Diagnostico Italiano, 20147 Milan, Italy;
| | - Lucy Costantino
- Medical Genetics Laboratory, Centro Diagnostico Italiano, 20147 Milan, Italy;
| | - Fulvio Ferrara
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano, 20147 Milan, Italy;
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, Università di Pavia, 27100 Pavia, Italy; (G.N.B.); (R.C.); (D.S.)
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy;
| |
Collapse
|
3
|
Lv W, Liu H, Wang X, Hao R. CIRC_0003907 MODULATES SEPSIS-INDUCED MYOCARDIAL INJURY VIA ENHANCING MYD88/NLRP3/NF-ΚB AXIS BY SPONGING MIR-944. Shock 2024; 61:705-711. [PMID: 38010112 DOI: 10.1097/shk.0000000000002271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Background : Sepsis-induced cardiomyopathy ( SIC ) is a common complication of sepsis with high morbidity and mortality but lacks specific therapy. The purpose of this study was to investigate the role of circularRNA_0003907 (circ_0003907) in myocardium injury induced by sepsis. Methods: In this experiment, human AC16 cells were treated with lipopolysaccharide (LPS) to induce an in vitro cardiomyocyte injury model. Expression of circ_0003907, microRNA-944 (miR-944), and MYD88 was detected using quantitative real-time polymerase chain reaction. Cell proliferation and apoptosis were assessed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, thymidine analog 5-ethynyl-2'-deoxyuridine, and flow cytometry assays. Secretions of proinflammatory cytokines IL-6 and TNF-α were detected using ELISA kits. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were detected using special kits. Protein levels of cyclin D1, cleaved caspase-3, MYD88, NLRP3, P65, and IκBα were determined using western blot assay. After being predicted using Circineractome and starBase, the interaction between miR-944 and circ_0003907 or MYD88 was confirmed using dual-luciferase reporter and RNA immunoprecipitation assays. Results: Circ_0003907 expression was increased in serum from SIC patients and in LPS-treated AC16 cells. Circ_0003907 knockdown might abolish LPS-triggered proliferation inhibition, and the promotion of apoptosis, inflammatory response, and oxidative stress in AC16 cells. In mechanism, circ_0003907 acted as a sponge for miR-944 to increase MYD88 expression. Meanwhile, the absence of circ_0003907 induced miR-944 expression and suppressed MYD88/NLRP3/NF-κB levels. Conclusion: Circ_0003907 sponged miR-944 to aggravate LPS-induced AC16 cell dysfunction via activating the MYD88/NLRP3/NF-κB axis during sepsis, which might provide a new direction for the treatment of SIC .
Collapse
Affiliation(s)
- Wei Lv
- Hypertension/Heart Failure Ward, Central Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Hui Liu
- Breast Thyroid Surgery Ward, Central Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Xin Wang
- Hypertension/Heart Failure Ward, Central Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Rui Hao
- Hypertension/Heart Failure Ward, Central Hospital Affiliated to Shandong First Medical University, Jinan City, China
| |
Collapse
|
4
|
Luan X, Xing H, Guo F, Liu W, Jiao Y, Liu Z, Wang X, Gao S. The role of ncRNAs in depression. Heliyon 2024; 10:e27307. [PMID: 38496863 PMCID: PMC10944209 DOI: 10.1016/j.heliyon.2024.e27307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Depressive disorders have a significant impact on public health, and depression have an unsatisfactory recurrence rate and are challenging to treat. Non-coding RNAs (ncRNAs) are RNAs that do not code protein, which have been shown to be crucial for transcriptional regulation. NcRNAs are important to the onset, progress and treatment of depression because they regulate various physiological functions. This makes them distinctively useful as biomarkers for diagnosing and tracking responses to therapy among individuals with depression. It is important to seek out and summarize the research findings on the impact of ncRNAs on depression since significant advancements have been made in this area recently. Hence, we methodically outlined the findings of published researches on ncRNAs and depression, focusing on microRNAs. Above all, this review aims to improve our understanding of ncRNAs and provide new insights of the diagnosis and treatment of depression.
Collapse
Affiliation(s)
- Xinchi Luan
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Han Xing
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Weiyi Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yang Jiao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Zhenyu Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xuezhe Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Luo M, Peng Y, Lv D, Xue Y, Huang L, Hu Y, Zhu W, Luo S, Shen J, Li X. LncRNA GAS5 downregulates NLRP3 inflammasome activation-mediated pyroptosis in sepsis-induced myocardial injury by targeting SIRT3/AMPKα. Heliyon 2023; 9:e22939. [PMID: 38076153 PMCID: PMC10703703 DOI: 10.1016/j.heliyon.2023.e22939] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2024] Open
Abstract
An increasing body of studies has demonstrated the significance of long non-coding RNA (lncRNA) growth arrest specific 5 (GAS5) in inflammation and myocardial injury in septic shock. This research aims to determine whether GAS5 contributes to the pathological development of sepsis-induced cardiac damage and NLRP3 inflammasome-mediated myocardial cell pyroptosis. Cecal ligation and puncture (CLP) surgery was used to cause septic shock in C57BL/6 wild-type mice. After CLP, inflammatory, pyroptosis parameters of myocardial tissue, survival rate, and Murine Sepsis Score (MSS) were assessed to evaluate the involvement of GAS5 in the mouse myocardial depression. To investigate GAS5's function in lipopolysaccharide (LPS) induced myocardial cell pyroptosis, gain- and loss-of-function experiments were conducted in vitro on HL-1 cells. Our findings indicated that CLP dramatically reduced survival rates, MSS, SIRT3 and p-AMPK expression, and activated the Nuclear factor-κB (NF-κB) pathway and NLRP3 inflammasome-mediated pyroptosis. The NF-κB and pyroptosis pathways were greatly elevated while SIRT3/p-AMPKα was dramatically decreased as a result of GAS5 being downregulated. Meanwhile, the regulatory effect could be suppressed by SIRT3 and AMPKα activator. Our observations supported the idea that GAS5 has a crucial protective impact against myocardial inflammation and pyroptosis in sepsis.
Collapse
Affiliation(s)
- Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Cardiovascular Disease Laboratory of Chongqing Medical University, 400016, Chongqing, China
| | - Yuce Peng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Cardiovascular Disease Laboratory of Chongqing Medical University, 400016, Chongqing, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Cardiovascular Disease Laboratory of Chongqing Medical University, 400016, Chongqing, China
| | - Yuzhou Xue
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Longxiang Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu Hu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Cardiovascular Disease Laboratory of Chongqing Medical University, 400016, Chongqing, China
| | - Wenyan Zhu
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Medical Data Research Institute of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Jian Shen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
6
|
Xiong W, Feng S, Zhao Y, Liu X, Gong J. Revealing Landscape of Competing Endogenous RNA Networks in Sepsis-Induced Cardiovascular Diseases. Rev Cardiovasc Med 2023; 24:214. [PMID: 39077015 PMCID: PMC11266464 DOI: 10.31083/j.rcm2407214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 02/06/2023] [Indexed: 07/31/2024] Open
Abstract
Cardiovascular dysfunction induced by sepsis is one of the most common phenotypes of cardiovascular diseases (CVDs), which is closely related to the high mortality of sepsis and is an urgent health problem to be solved worldwide. Unfortunately, the exact pathogenesis and pathophysiology of sepsis-induced cardiovascular dysfunction are not clear. As a research hotspot in recent years, competing endogenous RNA (ceRNA) networks are involved in the modulation of the pathophysiological progression of many diseases, including sepsis-related CVDs. Both long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) can specifically bind to microRNAs (miRNAs) as ceRNAs to target messenger RNAs (mRNAs), forming a ceRNA network composed of lncRNA/circRNA-miRNA-mRNA. This review demonstrates the potential regulatory mechanism of the ceRNA networks in sepsis-induced cardiovascular toxicity, hoping to provide novel therapeutic strategies and monitoring targets for sepsis-related CVDs.
Collapse
Affiliation(s)
- Wei Xiong
- Laboratory of Clinical Research, Ziyang People’s Hospital, Ziyang Hospital of Sichuan Provincial People’s Hospital, 641300 Ziyang, Sichuan, China
- Department of Anesthesiology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Shiyan Feng
- Laboratory of Clinical Research, Ziyang People’s Hospital, Ziyang Hospital of Sichuan Provincial People’s Hospital, 641300 Ziyang, Sichuan, China
- Emergency Medical Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, 610072 Chengdu, Sichuan, China
| | - Yanhua Zhao
- Laboratory of Clinical Research, Ziyang People’s Hospital, Ziyang Hospital of Sichuan Provincial People’s Hospital, 641300 Ziyang, Sichuan, China
| | - Xinquan Liu
- Laboratory of Clinical Research, Ziyang People’s Hospital, Ziyang Hospital of Sichuan Provincial People’s Hospital, 641300 Ziyang, Sichuan, China
| | - Jian Gong
- Laboratory of Clinical Research, Ziyang People’s Hospital, Ziyang Hospital of Sichuan Provincial People’s Hospital, 641300 Ziyang, Sichuan, China
- Department of Emergency Critical Care, Ziyang People’s Hospital, Ziyang Hospital of Sichuan Provincial People’s Hospital, 641300 Ziyang, Sichuan, China
| |
Collapse
|
7
|
Cheng J, Ding C, Tang H, Zhou H, Wu M, Chen Y. An Autophagy-Associated MITF-GAS5-miR-23 Loop Attenuates Vascular Oxidative and Inflammatory Damage in Sepsis. Biomedicines 2023; 11:1811. [PMID: 37509452 PMCID: PMC10376991 DOI: 10.3390/biomedicines11071811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Sepsis induces GAS5 expression in the vascular endothelium, but the molecular mechanism is unclear, as is the role of GAS5 in sepsis. METHODS AND RESULTS We observed that GAS5 expression in the endothelium was significantly upregulated in a sepsis mouse model. ChIP-PCR and EMSA confirmed that the oxidative stress (OS)-activated MiT-TFE transcription factor (MITF, TFE3, and TFEB)-mediated GAS5 transcription. In vitro, GAS5 overexpression attenuated OS and inflammation in endothelial cells (ECs) while maintaining the structural and functional integrity of mitochondria. In vivo, GAS5 reduced tissue ROS levels, maintained vascular barrier function to reduce leakage, and ultimately attenuated sepsis-induced lung injury. Luciferase reporter assays revealed that GAS5 protected MITF from degradation by sponging miR-23, thereby forming a positive feedback loop consisting of MITF, GAS5, and miR-23. Despite the fact that the OS-activated MITF-GAS5-miR-23 loop boosted MITF-mediated p62 transcription, ECs do not need to increase mitophagy to exert mitochondrial quality control since MITF-mediated Nrf2 transcription exists. Compared to mitophagy, MITF-transcribed p62 prefers to facilitate the autophagic degradation of Keap1 through a direct interaction, thereby relieving the inhibition of Nrf2 by Keap1, indicating that MITF can upregulate Nrf2 at both the transcriptional and posttranscriptional levels. Following this, ChIP-PCR demonstrated that Nrf2 can also transcribe MITF, revealing that there is a reciprocal positive regulatory association between MITF and Nrf2. CONCLUSION In sepsis, the ROS-activated MITF-GAS5-miR-23 loop integrated the antioxidant and autophagy systems through MITF-mediated transcription of Nrf2 and p62, which dynamically regulate the level and type of autophagy, as well as exert antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Junning Cheng
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Central Laboratory of School of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Chang Ding
- Central Laboratory of School of Life Sciences, Chongqing Medical University, Chongqing 400016, China
- Department of Ultrasound, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400013, China
| | - Huying Tang
- Central Laboratory of School of Life Sciences, Chongqing Medical University, Chongqing 400016, China
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China
| | - Haonan Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Mingdong Wu
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yikuan Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
8
|
Zhao H, Chen Y, Qian L, Du L, Wu X, Tian Y, Deng C, Liu S, Yang W, Lu C, Zhang Y, Ren J, Yang Y. Lycorine protects against septic myocardial injury by activating AMPK-related pathways. Free Radic Biol Med 2023; 197:1-14. [PMID: 36669544 DOI: 10.1016/j.freeradbiomed.2023.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/19/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
Cardiac dysfunction is a common complication in patients with sepsis triggering high morbidity and mortality. Lycorine (LYC), the main effective monomer component extracted from Lycoris bulbs, possesses antiviral, anti-inflammatory, analgesic, liver protection properties. In this study, the effect of LYC pre- and post-treatment as well as the underlying mechanism were evaluated in the cecal ligation and puncture (CLP) model of Balb/c mice. The survival rate, anal temperature, sepsis score, blood biochemical/routine indicators, cardiac function, sepsis-related pathophysiological processes, and AMPK signaling in septic mice were observed by echocardiography, histological staining, western blot, qPCR, and etc. LYC pretreatment attenuated myocardial injury in septic mice by improving survival rate, sepsis score, blood biochemical/routine indicators, cardiac function and structure, inhibiting inflammation and oxidative stress, improving mitochondrial function, modulating endoplasmic reticulum stress, and activating AMPK pathway. In particular, AMPK deficiency and AMPK inhibitor (Compound C) partially reversed the protective effects of LYC in septic mice. In addition, LYC posttreatment also has slight protective phenotypes on septic myocardial injury, but the effect is not as ideal as pretreatment. Taken together, these findings suggest that LYC may be a potential drug for the treatment of sepsis.
Collapse
Affiliation(s)
- Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Military Medical University, 1 Xinsi Road, Xi'an, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, China
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Luyang Du
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Xue Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, China
| | - Shuai Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Yan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China.
| |
Collapse
|
9
|
Cánovas-Cervera I, Nacher-Sendra E, Osca-Verdegal R, Dolz-Andrés E, Beltrán-García J, Rodríguez-Gimillo M, Ferrando-Sánchez C, Carbonell N, García-Giménez JL. The Intricate Role of Non-Coding RNAs in Sepsis-Associated Disseminated Intravascular Coagulation. Int J Mol Sci 2023; 24:ijms24032582. [PMID: 36768905 PMCID: PMC9916911 DOI: 10.3390/ijms24032582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Disseminated Intravascular Coagulation (DIC) is a type of tissue and organ dysregulation in sepsis, due mainly to the effect of the inflammation on the coagulation system. Unfortunately, the underlying molecular mechanisms that lead to this disorder are not fully understood. Moreover, current biomarkers for DIC, including biological and clinical parameters, generally provide a poor diagnosis and prognosis. In recent years, non-coding RNAs have been studied as promising and robust biomarkers for a variety of diseases. Thus, their potential in the diagnosis and prognosis of DIC should be further studied. Specifically, the relationship between the coagulation cascade and non-coding RNAs should be established. In this review, microRNAs, long non-coding RNAs, and circular RNAs are studied in relation to DIC. Specifically, the axis between these non-coding RNAs and the corresponding affected pathway has been identified, including inflammation, alteration of the coagulation cascade, and endothelial damage. The main affected pathway identified is PI3K/AKT/mTOR axis, where several ncRNAs participate in its regulation, including miR-122-5p which is sponged by circ_0005963, ciRS-122, and circPTN, and miR-19a-3p which is modulated by circ_0000096 and circ_0063425. Additionally, both miR-223 and miR-24 were found to affect the PI3K/AKT pathway and were regulated by lncGAS5 and lncKCNQ1OT1, respectively. Thus, this work provides a useful pipeline of inter-connected ncRNAs that future research on their impact on DIC can further explore.
Collapse
Affiliation(s)
- Irene Cánovas-Cervera
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
| | - Elena Nacher-Sendra
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
| | - Enric Dolz-Andrés
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Jesús Beltrán-García
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, CA 92093, USA
| | - María Rodríguez-Gimillo
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - Carolina Ferrando-Sánchez
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - Nieves Carbonell
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963-864-646
| |
Collapse
|
10
|
Abstract
Sepsis, a systemic inflammatory response disease, is the most severe complication of infection and a deadly disease. High mobility group proteins (HMGs) are non-histone nuclear proteins binding nucleosomes and regulate chromosome architecture and gene transcription, which act as a potent pro-inflammatory cytokine involved in the delayed endotoxin lethality and systemic inflammatory response. HMGs increase in serum and tissues during infection, especially in sepsis. A growing number of studies have demonstrated HMGs are not only cytokines which can mediate inflammation, but also potential therapeutic targets in sepsis. To reduce sepsis-related mortality, a better understanding of HMGs is essential. In this review, we described the structure and function of HMGs, summarized the definition, epidemiology and pathophysiology of sepsis, and discussed the HMGs-related mechanisms in sepsis from the perspectives of non-coding RNAs (microRNA, long non-coding RNA, circular RNA), programmed cell death (apoptosis, necroptosis and pyroptosis), drugs and other pathophysiological aspects to provide new targets and ideas for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Guibin Liang
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhihui He
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Levels of lncRNA GAS5 in Plasma of Patients with Severe Traumatic Brain Injury: Correlation with Systemic Inflammation and Early Outcome. J Clin Med 2022; 11:jcm11123319. [PMID: 35743389 PMCID: PMC9224922 DOI: 10.3390/jcm11123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Scientific efforts continue to concentrate on elucidating the complex molecular mechanisms underlying traumatic brain injury (TBI), and recent reports suggest that epigenetic regulation including long non-coding RNA (lncRNA) is involved. The present study aimed to investigate the plasma concentration of a long non-coding RNA, named growth arrest-specific 5 (GAS5), in a group of 45 patients with severe TBI (sTBI), and to analyze the correlations of GAS5 with TBI onset, injury severity, systemic inflammation, and early outcome of the patients. It was found that plasma GAS5 levels were substantially increased in sTBI patients compared with the relative controls (p < 0.001). Further, significantly higher expression of plasma GAS5 was observed in patients with a Glasgow Coma Scale (GCS) score of less than five (p = 0.002) or unfavorable outcome at discharge (p < 0.001). Circulating GAS5 expression had a negative correlation with GCS score (r = −0.406, p = 0.006), and positive correlations with white blood cell count (r = 0.473, p = 0.001), neutrophil count (r = 0.502, p < 0.001), and neutrophil/lymphocyte ratio (NLR) (r = 0.398, p = 0.007). Univariate and multivariate logistic regression analyses revealed that GCS score (OR = 0.318, 95% CI 0.132−0.767, p = 0.011) and GAS5 (OR = 2.771, 95% CI 1.025−7.494, p = 0.045) were the two independent predictors for early outcome of patients. The receiver operating characteristic (ROC) curves showed good prognostic values of GCS score (AUC = 0.856, 95% CI: 0.719−0.943) and GAS5 expression (AUC = 0.798, 95% CI: 0.651−0.903). Importantly, the combined use of them can improve the prognostic ability of TBI with an AUC of 0.895 (95% CI: 0.767−0.966). Collectively, our study indicated that the levels of lncRNA GAS5 in circulation were elevated following severe TBI and correlated well with injury severity and inflammatory parameters. In addition, GAS5 as well as GCS scores may have the potential to predict the early outcome of TBI patients.
Collapse
|
12
|
Le Y, Shi Y. MALAT1 regulates PCT expression in sepsis patients through the miR‐125b/STAT3 axis. J Clin Lab Anal 2022; 36:e24428. [PMID: 35426182 PMCID: PMC9102486 DOI: 10.1002/jcla.24428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Procalcitonin (PCT) is an important marker in diagnosing sepsis. However, some other diseases can also cause an increase in PCT. PCT still has some limitations in the clinical application of diagnosing sepsis. Therefore, it is of great significance to clarify the regulatory mechanism of PCT expression in sepsis and provide new therapeutic targets for sepsis. Methods Blood samples from clinical patients were collected, and peripheral blood monocytes were isolated. Bioinformatics was performed to find the ceRNA regulatory network of STAT3/PCT. MALAT1 and miR‐125b were detected by qRT‐PCR. MALAT1 was located by fluorescence in situ hybridization (FISH) in U937 cells, and the regulatory relationship between MALAT1, miR‐125b, and STAT3 was verified by double luciferase activity report and RNA pull‐down assay. U937 cells were transfected with miR‐125b, and the effects of the MALAT1/miR‐125b/STAT3 pathway on gene and protein secretion levels of PCT were verified by qRT‐PCR, western blot, and ELISA. Results In the serum of sepsis patients and lipopolysaccharide(LPS)‐induced U937 cells, MALAT1, STAT3, and PCT gene expression levels were significantly increased, while miR‐125b expression level was decreased. FISH results showed that the MALAT1 transcript was mainly located in the nucleus. The double luciferase activity report and RNA pull‐down assay results suggested a targeted regulatory relationship between MALAT1, miR‐125b, and STAT3. LPS‐induced U937 cells transfection with MALAT1 siRNA decreased STAT3 protein expression and phosphorylation level and the expression of PCT. Co‐transfection with miR‐125b inhibitor effectively reversed this phenomenon. Conclusions MALAT1 could upregulate the expressions of STAT3 and PCT by targeted adsorption of miR‐125b.
Collapse
Affiliation(s)
- Yuanjie Le
- Department of Emergency Hwamei Hospital University of Chinese Academy of Sciences Ningbo China
- Ningbo Institute of Life and Health Industry University of Chinese Academy of Sciences Ningbo China
| | - Yongwei Shi
- Department of Emergency Hwamei Hospital University of Chinese Academy of Sciences Ningbo China
- Ningbo Institute of Life and Health Industry University of Chinese Academy of Sciences Ningbo China
| |
Collapse
|
13
|
Zhang W, Chen B, Chen W. LncRNA GAS5 relates to Th17 cells and serves as a potential biomarker for sepsis inflammation, organ dysfunctions and mortality risk. J Clin Lab Anal 2022; 36:e24309. [PMID: 35325494 PMCID: PMC9102497 DOI: 10.1002/jcla.24309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Long noncoding RNA GAS5 (lnc-GAS5) is able to regulate macrophage M1 polarization and Th17 cell differentiation, also engaged in sepsis-induced inflammation and organ injury. This study aimed to further evaluate its linkage with Th1 cells and Th17 cells, as well as its clinical value in sepsis management. METHODS About 101 sepsis patients were enrolled followed by peripheral blood mononuclear cell (PBMC) and serum samples collection. PBMC lnc-GAS5 was detected by RT-qPCR; Th1 cells and Th17 cells in PBMC CD4+ T cells were detected by flow cytometry; serum IFN-γ and IL-17A were detected by ELISA. Besides, PBMC lnc-GAS5 was also detected in 50 health controls (HCs). RESULTS Lnc-GAS5 was reduced in sepsis patients than in HCs (p < 0.001), which also well-distinguished sepsis patients from HCs with AUC 0.860. Lnc-GAS5 did not relate to Th1 cells (p = 0.059) or IFN-γ (p = 0.192); while negatively linked with Th17 cells (p = 0.002) and IL-17A (p = 0.019) in sepsis patients. Interestingly, lnc-GAS5 negatively correlated with SOFA score (p = 0.001), SOFA-Respiratory system score (p = 0.001), SOFA-Coagulation score (p = 0.015), and SOFA-Renal system score (p = 0.026), but not SOFA-Liver score (p = 0.080), SOFA-Cardiovascular system score (p = 0.207) or SOFA-Nervous system score (p = 0.182) in sepsis patients. Furthermore, lnc-GAS5 was negatively related to CRP (p = 0.002) and APACHE II score (p = 0.004) in sepsis patients. Finally, lnc-GAS5 was decreased in dead sepsis patients compared to survivors (p = 0.007), which also distinguished sepsis deaths from survivors with AUC 0.713. CONCLUSION Lnc-GAS5 relates to Th17 cells and serves as a potential biomarker for sepsis severity and mortality risk.
Collapse
Affiliation(s)
- Weizhen Zhang
- Intensive Care Unit, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingqing Chen
- Internal Medicine Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Chen
- Intensive Care Unit, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Long Non-coding RNA GAS5/miR-520-3p/SOCS3 Axis Regulates Inflammatory Response in Lipopolysaccharide-Induced Macrophages. Biochem Genet 2022; 60:1793-1808. [DOI: 10.1007/s10528-021-10179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
|
15
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Arefian N. Regulatory Role of Non-Coding RNAs on Immune Responses During Sepsis. Front Immunol 2021; 12:798713. [PMID: 34956235 PMCID: PMC8695688 DOI: 10.3389/fimmu.2021.798713] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Sepsis is resulted from a systemic inflammatory response to bacterial, viral, or fungal agents. The induced inflammatory response by these microorganisms can lead to multiple organ system failure with devastating consequences. Recent studies have shown altered expressions of several non-coding RNAs such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) during sepsis. These transcripts have also been found to participate in the pathogenesis of multiple organ system failure through different mechanisms. NEAT1, MALAT1, THRIL, XIST, MIAT and TUG1 are among lncRNAs that participate in the pathoetiology of sepsis-related complications. miR-21, miR-155, miR-15a-5p, miR-494-3p, miR-218, miR-122, miR-208a-5p, miR-328 and miR-218 are examples of miRNAs participating in these complications. Finally, tens of circRNAs such as circC3P1, hsa_circRNA_104484, hsa_circRNA_104670 and circVMA21 and circ-PRKCI have been found to affect pathogenesis of sepsis. In the current review, we describe the role of these three classes of noncoding RNAs in the pathoetiology of sepsis-related complications.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Normohammad Arefian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Lu F, Hong Y, Liu L, Wei N, Lin Y, He J, Shao Y. Long noncoding RNAs: A potential target in sepsis-induced cellular disorder. Exp Cell Res 2021; 406:112756. [PMID: 34384779 DOI: 10.1016/j.yexcr.2021.112756] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
Sepsis, an inflammation-related clinical syndrome, is characterized by disrupted immune homeostasis accompanied by infection and multiple organ dysfunction as determined by the Sequential Organ Failure Assessment (SOFA). Substantial evidence has recently suggested that lncRNAs orchestrate various biological processes in diseases, and lncRNAs play special roles in the diagnosis and management of sepsis. To date, very few reviews have provided clear and comprehensive clues to demonstrate the roles of lncRNAs in the pathogenesis of sepsis. Based on previously published studies, in this review, we summarize the different functions of lncRNAs in sepsis-induced cellular disorders and sepsis-induced organ failure to show the potential roles of lncRNAs in the diagnosis and management of sepsis. We further depict the function of some lncRNAs known to be pivotal regulators in the pathogenesis of sepsis to discuss the underlying molecular events. Additionally, we list and discuss several hotspots in research on lncRNAs, which may be conducive to future lncRNA-targeted therapeutic approaches for sepsis treatment.
Collapse
Affiliation(s)
- Furong Lu
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Yuan Hong
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Lizhen Liu
- The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Ning Wei
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Yao Lin
- The Intensive Care Unit, Clinical Medicine Research Laboratory, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, PR China
| | - Junbing He
- The Intensive Care Unit, Clinical Medicine Research Laboratory, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, PR China.
| | - Yiming Shao
- The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China; The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|