1
|
Yao Y, Zhu J, Qin S, Zhou Z, Zeng Q, Long R, Mao Z, Dong X, Zhao R, Zhang R, Zhang S, Huang S, Chen L. Resveratrol induces autophagy impeding BAFF-stimulated B-cell proliferation and survival by inhibiting the Akt/mTOR pathway. Biochem Pharmacol 2022; 202:115139. [PMID: 35697119 PMCID: PMC9283307 DOI: 10.1016/j.bcp.2022.115139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Therapeutically targeting B cells has received great attention in the treatment of B-cell malignancies and autoimmune diseases. The B-cell activating factor (BAFF) is critical to the survival of normal and neoplastic B cells, and excess production of BAFF contributes to autoimmune diseases. Resveratrol, a natural polyphenolic compound, has a positive effect on the treatment of autoimmune diseases. However, how resveratrol affects BAFF-stimulated B-cell proliferation and survival is poorly understood. Here, we show that resveratrol increased autophagosome formation and ATG5/LC3-II levels and decreased p62 level, promoting autophagic flux/autophagy and thereby suppressing the basal or human soluble BAFF (hsBAFF)-stimulated proliferation and survival of normal and B-lymphoid (Raji) cells. This is supported by the findings that inhibition of autophagy with 3-methyladenine (3-MA, an inhibitor of Vps34) or ATG5 shRNA attenuates resveratrol-induced autophagy and -reduced proliferation/viability in B-cells. Inhibition of mTOR with rapamycin or knockdown of mTOR potentiated resveratrol-induced autophagy and inhibition of hsBAFF-stimulated B-cell proliferation/viability, while overexpression of wild-type mTOR conferred resistance to the actions of resveratrol. Similarly, inhibition of Akt with Akt inhibitor X or ectopic expression of dominant negative Akt reinforced resveratrol-induced autophagy and inhibition of hsBAFF-stimulated B-cell proliferation/viability, whereas expression of constitutively active Akt conferred resistance to the actions of resveratrol. Taken together, these results indicate that resveratrol induces autophagy impeding BAFF-stimulated proliferation and survival via blocking the Akt/mTOR signaling pathway in normal and neoplastic B cells. Our findings highlight that resveratrol has a great potential for prevention and treatment of excessive BAFF-elicited aggressive B-cell disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Yajie Yao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Jiawei Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Shanshan Qin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhihan Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Qingyu Zeng
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Ruyu Long
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Zun Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaoqing Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Rui Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Ruijie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Shuangquan Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Shreveport, LA 71130-3932, USA; Department of Hematology and Oncology, Shreveport, LA 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Natural Products of Pharmacology and Mechanisms in Nucleus Pulposus Cells and Intervertebral Disc Degeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9963677. [PMID: 34394398 PMCID: PMC8357477 DOI: 10.1155/2021/9963677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain (LBP), which severely reduces the quality of life and imposes a heavy financial burden on the families of affected individuals. Current research suggests that IDD is a complex cell-mediated process. Inflammation, oxidative stress, mitochondrial dysfunction, abnormal mechanical load, telomere shortening, DNA damage, and nutrient deprivation contribute to intervertebral disc cell senescence and changes in matrix metabolism, ultimately causing IDD. Natural products are widespread, structurally diverse, afford unique advantages, and exhibit great potential in terms of IDD treatment. In recent years, increasing numbers of natural ingredients have been shown to inhibit the degeneration of nucleus pulposus cells through various modes of action. Here, we review the pharmacological effects of natural products on nucleus pulposus cells and the mechanisms involved. An improved understanding of how natural products target signalling pathways will aid the development of anti-IDD drugs. This review focuses on potential IDD drugs.
Collapse
|
3
|
Higenamine mitigates interleukin-1β-induced human nucleus pulposus cell apoptosis by ROS-mediated PI3K/Akt signaling. Mol Cell Biochem 2021; 476:3889-3897. [PMID: 34146182 DOI: 10.1007/s11010-021-04197-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Intervertebral disc degeneration (IDD) is a natural problem linked to the inflammation. Higenamine exerts multiple pharmacological properties in inflammation-related disorders. Our study aimed to explore the function of higenamine on interleukin (IL)-1β-caused apoptosis of human nucleus pulposus cells (HNPCs). Cell apoptosis was investigated by TUNEL and flow cytometry. Apoptosis-related biomarkers were determined by qRT-PCR or Western blotting. The protein in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling was measured by Western blotting. We found that higenamine showed little effect on cell apoptosis, but mitigated IL-1β-caused apoptosis in a dose-dependent pattern. Higenamine attenuated IL-1β-induced decrease of Bcl-2 and increase of Bax and cleaved caspase-3. Higenamine did not affect the reactive oxygen species (ROS) level and the PI3K/Akt signaling, but attenuated IL-1β-induced ROS production and inhibition of the PI3K/Akt signaling. IL-1β repressed the activation of the PI3K/Akt pathway, but ROS inhibition using N-acetylcysteine (NAC) rescued this pathway. The PI3K/Akt signaling suppression using LY294002 reversed the inhibitive effect of higenamine on IL-1β-caused apoptosis, and this effect was weakened by ROS inhibition. In conclusion, higenamine attenuates IL-1β-caused apoptosis of HNPCs via ROS-mediated PI3K/Akt pathway.
Collapse
|
4
|
Knockdown of CRAD suppresses the growth and promotes the apoptosis of human lung cancer cells via Claudin 4. Biosci Rep 2021; 40:226565. [PMID: 33006362 PMCID: PMC7560521 DOI: 10.1042/bsr20201140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/21/2022] Open
Abstract
Non–small cell lung cancer (NSCLC) is one of the most common causes of cancer-related mortality globally. However, the mechanism underlying NSCLC is not fully understood. Here, we investigated the role of cancer-related regulator of actin dynamics (CRAD) in NSCLC. We showed that CRAD was up-regulated in human NSCLC tissues and lung cancer cell lines. Lentivirus-mediated knockdown of CRAD repressed the proliferation and colony growth of A549 and H1299 cells. Apoptosis was enhanced by CRAD silencing in both cells, implicating that CRAD might maintain the survival of lung cancer cells. Microarray and bioinformatic assay revealed that CRAD directly or indirectly regulated diverse genes, including those involved in cell cycle and DNA damage repair. qRT-PCR and Western blot results confirmed the dysregulated genes as shown in microarray analysis. Claudin 4 was up-regulated in CRAD silenced A549 cells. The knockdown of Claudin 4 blocked the effects of CRAD on the expression of cell cycle and apoptosis effectors and enhanced the viability of A549 cells with CRAD down-regulation. Taken together, our findings demonstrate that CRAD acts as an oncogene in NSCLC at least partly through repressing Claudin 4.
Collapse
|