1
|
Chang J, Wu H, Wu J, Liu M, Zhang W, Hu Y, Zhang X, Xu J, Li L, Yu P, Zhu J. Constructing a novel mitochondrial-related gene signature for evaluating the tumor immune microenvironment and predicting survival in stomach adenocarcinoma. J Transl Med 2023; 21:191. [PMID: 36915111 PMCID: PMC10012538 DOI: 10.1186/s12967-023-04033-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The incidence and mortality of gastric cancer ranks fifth and fourth worldwide among all malignancies, respectively. Accumulating evidences have revealed the close relationship between mitochondrial dysfunction and the initiation and progression of stomach cancer. However, rare prognostic models for mitochondrial-related gene risk have been built up in stomach cancer. METHODS In current study, the expression and prognostic value of mitochondrial-related genes in stomach adenocarcinoma (STAD) patients were systematically analyzed to establish a mitochondrial-related risk model based on available TCGA and GEO databases. The tumor microenvironment (TME), immune cell infiltration, tumor mutation burden, and drug sensitivity of gastric adenocarcinoma patients were also investigated using R language, GraphPad Prism 8 and online databases. RESULTS We established a mitochondrial-related risk prognostic model including NOX4, ALDH3A2, FKBP10 and MAOA and validated its predictive power. This risk model indicated that the immune cell infiltration in high-risk group was significantly different from that in the low-risk group. Besides, the risk score was closely related to TME signature genes and immune checkpoint molecules, suggesting that the immunosuppressive tumor microenvironment might lead to poor prognosis in high-risk groups. Moreover, TIDE analysis demonstrated that combined analysis of risk score and immune score, or stromal score, or microsatellite status could more effectively predict the benefit of immunotherapy in STAD patients with different stratifications. Finally, rapamycin, PD-0325901 and dasatinib were found to be more effective for patients in the high-risk group, whereas AZD7762, CEP-701 and methotrexate were predicted to be more effective for patients in the low-risk group. CONCLUSIONS Our results suggest that the mitochondrial-related risk model could be a reliable prognostic biomarker for personalized treatment of STAD patients.
Collapse
Affiliation(s)
- Jingjia Chang
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Hao Wu
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Jin Wu
- Department of Pathology, Laboratory of Translational Medicine Research, Deyang People's Hospital, Deyang, China.,Key Laboratory of Tumor Molecular Research of Deyang, Deyang, China.,Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Ming Liu
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Wentao Zhang
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Yanfen Hu
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Xintong Zhang
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Xu
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Li Li
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Pengfei Yu
- Department of Gastrointestinal Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Jianjun Zhu
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Maurya VK, Szwarc MM, Fernandez-Valdivia R, Lonard DM, Song Y, Joshi N, Fazleabas AT, Lydon JP. Early growth response 1 transcription factor is essential for the pathogenic properties of human endometriotic epithelial cells. Reproduction 2022; 164:41-54. [PMID: 35679138 PMCID: PMC9339520 DOI: 10.1530/rep-22-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/09/2022] [Indexed: 01/13/2023]
Abstract
Although a non-malignant gynecological disorder, endometriosis displays some pathogenic features of malignancy, such as cell proliferation, migration, invasion and adaptation to hypoxia. Current treatments of endometriosis include pharmacotherapy and/or surgery, which are of limited efficacy and often associated with adverse side effects. Therefore, to develop more effective therapies to treat this disease, a broader understanding of the underlying molecular mechanisms that underpin endometriosis needs to be attained. Using immortalized human endometriotic epithelial and stromal cell lines, we demonstrate that the early growth response 1 (EGR1) transcription factor is essential for cell proliferation, migration and invasion, which represent some of the pathogenic properties of endometriotic cells. Genome-wide transcriptomics identified an EGR1-dependent transcriptome in human endometriotic epithelial cells that potentially encodes a diverse spectrum of proteins that are known to be involved in tissue pathologies. To underscore the utility of this transcriptomic data set, we demonstrate that carbonic anhydrase 9 (CA9), a homeostatic regulator of intracellular pH, is not only a molecular target of EGR1 but is also important for maintaining many of the cellular properties of human endometriotic epithelial cells that are also ascribed to EGR1. Considering therapeutic intervention strategies are actively being developed for EGR1 and CAIX in the treatment of other pathologies, we believe EGR1 and its transcriptome (which includes CA9) will offer not only a new conceptual framework to advance our understanding of endometriosis but will also furnish new molecular vulnerabilities to be leveraged as potential therapeutic options in the future treatment of endometriosis.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yong Song
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Niraj Joshi
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Wang Z, Wang Z, Hu X, Han Q, Chen K, Pang G. Extracellular Matrix-Associated Pathways Promote the Progression of Gastric Cancer by Impacting the Dendritic Cell Axis. Int J Gen Med 2021; 14:6725-6739. [PMID: 34675633 PMCID: PMC8520888 DOI: 10.2147/ijgm.s334245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/29/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the third most frequent malignant tumour in the Chinese population, let alone the whole world. Recently, most prognostic models have only focused on the levels of several genes, miRNAs, lncRNAs, gene mutations, or DNA methylation; however, the activation status of biological pathways is more stable and can reflect the comprehensive inner conditions of tumours. METHODS We collected samples from the Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) cohort and GSE62254 cohort, with a total of 594 patients. We employed GSEA to first compare the diverse activated signalling pathways between dead GC patients and living patients. The least absolute shrinkage and selection operator (LASSO) regression analysis was subsequently performed by the "glmnet" package to generate a prognostic signature. RESULTS We extracted a total of 218 genes from the KEGG Focal Adhesion and KEGG ECM Receptor Interaction pathways, which showed significant activation in dead GC patients in two enrolled cohorts, for subsequent LASSO analysis. In the TCGA-STAD cohort, patients in the high-risk group faced a significantly poorer prognosis than those in the low-risk group (P < 0.001, HR: 4.62, 95% CI: 3.447-6.183), with an AUC of 0.694. In the GSE62254 cohort, the HR value was 4.94 (95% CI: 3.413-7.165), and the AUC value was as high as 0.834. A high-risk score and poor prognosis correlated with infiltrated dendritic cells, and the receptor of IFN-α was also positively linked with the risk score, as well as poor prognosis. GC patients with high-risk scores were more likely to respond to CTLA4 treatment but not PD1 treatment. CONCLUSION Taken together, we established and verified an extracellular matrix prognostic model of gastric cancer patients. The model can be used to evaluate the risk of death of GC patients, as well as the response to anti-CTLA4 immunotherapy.
Collapse
Affiliation(s)
- Zhenlin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People’s Republic of China
| | - Zunyun Wang
- Department of Human Anatomy, School of Basic Medicine Sciences, Anhui Medical University, Hefei, 230032, Anhui, People’s Republic of China
| | - Xianyu Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People’s Republic of China
| | - Qijun Han
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People’s Republic of China
| | - Ke Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People’s Republic of China
| | - Gang Pang
- Department of Human Anatomy, School of Basic Medicine Sciences, Anhui Medical University, Hefei, 230032, Anhui, People’s Republic of China
| |
Collapse
|