1
|
Tang Q, Wei S, He X, Zheng X, Tao F, Tu P, Gao B. Lutein-Rich Beverage Alleviates Visual Fatigue in the Hyperglycemia Model of Sprague-Dawley Rats. Metabolites 2023; 13:1110. [PMID: 37999206 PMCID: PMC10673329 DOI: 10.3390/metabo13111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
Asthenopia is a syndrome based on the symptoms of eye discomfort that has become a chronic disease that interferes with and harms people's physical and mental health. Lutein is an internationally recognized "eye nutrient", and studies have shown that it can protect the retina and relieve visual fatigue. In this study, lutein was extracted from marigold (Tagetes erecta L.) and saponified. The purified lutein concentration measured by HPLC was 50.12 mg/100 g. Then, purified lutein was modified to be water-soluble by nanoscale modification and microencapsulation technology. Water-soluble lutein was then mixed with a leaching solution of Chinese wolfberry and chrysanthemum to make a functional beverage. The effects of this beverage on hepatic antioxidant enzymes and the alleviation of visual fatigue in a rat model of diabetes were investigated for 4 weeks. Lutein intake of 0.72 (medium-lutein beverage group) and 1.44 mg/mL (high-lutein beverage group) relieved visual fatigue, ameliorated turbidity symptoms of impaired crystalline lenses, reduced hepatic MDA concentration, increased hepatic GSH concentration, and significantly increased the activities of the hepatic antioxidant enzymes SOD, CAT, GSH-Px, and GR in rats. These data suggest that a lutein-rich beverage is an effective and harmless way to increase the total anti-oxidation capacity of lenses and alleviate visual fatigue.
Collapse
Affiliation(s)
- Qiong Tang
- College of Standardization, China Jiliang University, Hangzhou 310018, China; (Q.T.); (S.W.); (X.H.); (F.T.)
| | - Sishan Wei
- College of Standardization, China Jiliang University, Hangzhou 310018, China; (Q.T.); (S.W.); (X.H.); (F.T.)
| | - Xiangyi He
- College of Standardization, China Jiliang University, Hangzhou 310018, China; (Q.T.); (S.W.); (X.H.); (F.T.)
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China;
| | - Fei Tao
- College of Standardization, China Jiliang University, Hangzhou 310018, China; (Q.T.); (S.W.); (X.H.); (F.T.)
| | - Pengcheng Tu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Bei Gao
- Department of Marine Science, School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
2
|
Fufang Fanshiliu Decoction Revealed the Antidiabetic Effect through Modulating Inflammatory Response and Gut Microbiota Composition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3255401. [PMID: 36262166 PMCID: PMC9576391 DOI: 10.1155/2022/3255401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Background Diabetes mellitus brings serious threats and financial burdens to human beings worldwide. Fufang Fanshiliu decoction (FFSLD), a traditional Chinese medicine formula showing great antidiabetic effects, has been used in clinics for many years. Objective This study aims to explore the underlying therapeutic mechanisms of FFSLD in Type II diabetes mellitus (T2DM). Methods Sprague–Dawley rats induced by high-fat diet feeding combined with streptozotocin injection were used to establish the T2DM model. All rats were randomly divided into 6 groups: control, model, metformin, high dosage, middle dosage, and low dosage of FFSLD. After 4 weeks of treatment, serum, intestinal mucosa, and fecal samples were collected for further analysis. ELISA was used to detect the diabetic-related serum indicators and proinflammation cytokines. Gene or protein expressions of mitogen-activated protein kinase (MAPK), interleukin 1 beta (IL-1β), transforming growth factor-beta (TGF-β), and tumor necrosis factor-alpha (TNF-α) in intestinal mucosa were analyzed by quantitative real-time polymerase chain reaction (RT-PCR) or western blot. 16s rRNA gene sequencing was used to detect the changes of gut microbiome in these groups. Intestinal gut microbiota (GM) composition was further analyzed according to the sequencing libraries. Results FFSLD effectively recovered the diabetic-related biochemical indexes by reducing fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), insulin, and increasing high-density lipoprotein cholesterol (HDL-C). Furthermore, FFSLD significantly ameliorated the abnormal levels of proinflammation cytokines including IL-1β, IL-6, TNF-α, and TGF-β. In addition, the GM compositions of rats in control, model, and FFSLD treated groups were different. FFSLD significantly increased the relative abundance of Lactobacillus, Akkermansia, and Proteus, and reduced the relative abundance of Alistipes, Desulfovibrio, and Helicobacter. Moreover, these changed bacteria were closely related to the diabetic-related serum indicators and proinflammatory cytokines. Conclusion These results suggest that FFSLD alleviates diabetic symptoms in T2DM rats through regulating GM composition and inhibiting inflammatory response, which clarify the therapeutic mechanism of FFSLD on T2DM and provide a theoretical basis for its further clinical application.
Collapse
|
3
|
Liu Y, Zhou X, Zhou D, Jian Y, Jia J, Ge F. Isolation of Chalcomoracin as a Potential α-Glycosidase Inhibitor from Mulberry Leaves and Its Binding Mechanism. Molecules 2022; 27:molecules27185742. [PMID: 36144478 PMCID: PMC9504037 DOI: 10.3390/molecules27185742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetes is a chronic metabolic disease, whereas α-glucosidases are key enzymes involved in the metabolism of starch and glycogen. There is a long history of the use of mulberry leaf (the leaf of Morus alba) as an antidiabetic herb in China, and we found that chalcomoracin, one of the specific Diels–Alder adducts in mulberry leaf, had prominent α-glucosidase inhibitory activity and has the potential to be a substitute for current hypoglycemic drugs such as acarbose, which have severe gastrointestinal side effects. In this study, chalcomoracin was effectively isolated from mulberry leaves, and its α-glucosidase inhibition was studied via enzymatic kinetics, isothermal titration (ITC) and molecular docking. The results showed that chalcomoracin inhibited α-glucosidase through both competitive and non-competitive manners, and its inhibitory activity was stronger than that of 1-doxymycin (1-DNJ) but slightly weaker than that of acarbose. ITC analysis revealed that the combination of chalcomoracin and α-glucosidase was an entropy-driven spontaneous reaction, and the molecular docking results also verified this conclusion. During the binding process, chalcomoracin went into the “pocket” of α-glucosidase via hydrophobic interactions, and it is linked with residues Val544, Asp95, Ala93, Gly119, Arg275 and Pro287 by hydrogen bonds. This study provided a potential compound for the prevention and treatment of diabetes and a theoretical basis for the discovery of novel candidates for α-glycosidase inhibitors.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongxing Jian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingfu Jia
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515000, China
- Correspondence: (J.J.); (F.G.)
| | - Fahuan Ge
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Correspondence: (J.J.); (F.G.)
| |
Collapse
|
4
|
Dai W, Chen C, Dong G, Li G, Peng W, Liu X, Yang J, Li L, Xu R, Hu X. Alleviation of Fufang Fanshiliu decoction on type II diabetes mellitus by reducing insulin resistance: A comprehensive network prediction and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115338. [PMID: 35568115 DOI: 10.1016/j.jep.2022.115338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Fanshiliu decoction (FFSLD) is a Chinese herbal medicine prescription that has been used in type 2 diabetes mellitus (T2DM), while the underlying mechanism remains unclear. AIM OF THE STUDY To validate the efficacy and explore the potential mechanisms of FFSLD in treating T2DM via integrating a network pharmacological approach and experimental evaluation. MATERIALS AND METHODS T2DM mice model induced by high-fat diet feeding combined with streptozotocin injection was selected to investigate the alleviation of FFSLD against T2DM, via detecting the levels of glucose, insulin, glucagon (GC), triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). Network pharmacological analysis was used to predict the potential mechanisms, including the pharmacokinetics and drug-likeness screening, active ingredients and potential targets prediction, network analysis, and enrichment analysis. The candidate bioactive molecules of FFSLD, and targets information excavated through TCMSP, Uniprot, GeneCards, OMIM databases, were combined for comprehensive analysis by constructing "drug-compound-target-disease" and "protein-protein interaction" networks. Enrichment analysis was performed via Gene Ontology (GO) and Koto Encyclopedia of Genes and Genomes (KEGG) databases. HepG2 insulin-resistance (IR) cells model induced by high glucose was used to verify the potential mechanisms of FFSLD against T2DM which were predicted by the network pharmacology. RESULTS The animal study showed that FFSLD significantly decreased the blood glucose, and reversed the abnormal levels of insulin, GC, TG, TC, HDL-C, and LDL-C in T2DM mice. Network pharmacological analysis indicated that 106 active compounds of FFSLD might be correlated with 628 targets in treating T2DM, and the mechanism would probably be related to insulin resistance that harbored a high response value (P = 5.88844 E-33) though regulating Akt1, ESR1, oxidoreductase activity, and JAK/STAT signalings. Experimental validation showed that FFSLD reduced the ROS level, up-regulated the expressions of p-AKT, Nrf-2, and ESR1, and down-regulated the expressions of JAK2, STAT3, and Keap-1 in the HepG2-IR cells model. CONCLUSIONS This study demonstrated that the therapeutic effect of FFSLD on T2DM was related to IR alleviation. The underlying mechanisms were associated with the regulation of PI3K/AKT, JAK/STAT, oxidative stress, and ESR signaling pathways.
Collapse
Affiliation(s)
- Weibo Dai
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, PR China
| | - Chang Chen
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, PR China
| | - Gengting Dong
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, PR China
| | - Guangru Li
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, PR China
| | - Weiwen Peng
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, PR China
| | - Xin Liu
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, PR China
| | - Jing Yang
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, PR China
| | - Leyu Li
- Endocrinology Department, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, PR China.
| | - Ruiyan Xu
- Endocrinology Department, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, PR China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
5
|
Luo W, Zhou J, Yang X, Wu R, Liu H, Shao H, Huang B, Kang X, Yang L, Liu D. A Chinese medical nutrition therapy diet accompanied by intermittent energy restriction alleviates type 2 diabetes by enhancing pancreatic islet function and regulating gut microbiota composition. Food Res Int 2022; 161:111744. [DOI: 10.1016/j.foodres.2022.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
|
6
|
Wu S, Luo H, Zhong Z, Ai Y, Zhao Y, Liang Q, Wang Y. Phytochemistry, Pharmacology and Quality Control of Xiasangju: A Traditional Chinese Medicine Formula. Front Pharmacol 2022; 13:930813. [PMID: 35814215 PMCID: PMC9259862 DOI: 10.3389/fphar.2022.930813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
As a traditional Chinese herbal formula, Xiasangju (XSJ) is widely used in China for antipyresis and influenza treatment. However, XSJ still fails to have a comprehensive summary of the research progress in the last decade. This review summarizes the advanced research on the extraction process, phytochemistry, pharmacological activity, and quality control of XSJ. Current research mainly focuses on quality control and the pharmacological effects of single herbs and active ingredients, but many pharmacological mechanisms of the formula are unclear. The development of active ingredients reflects the active characteristics of triterpenes, phenolic acids and flavonoids, but the hepatotoxicity of Prunella vulgaris L. has not been taken into account. XSJ has extensive historical practical experiences, while systematic clinical trials remain lacking. Therefore, it is necessary to study the active ingredients and define the mechanisms of XSJ to develop multiple applications, and further studies on the dose range between its hepatoprotective activity and hepatotoxicity are necessary to improve the safety of the clinical application. In this review, the current problems are discussed to facilitate the reference basis for the subsequent research on the development of XSJ and future application directions.
Collapse
Affiliation(s)
- Siyuan Wu
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yongjian Ai
- Department of Chemistry, Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Beijing Key Lab of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| | - Yonghua Zhao
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| | - Qionglin Liang
- Department of Chemistry, Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Beijing Key Lab of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| |
Collapse
|