1
|
Jeong SY, Park D, Park T, Han JS, Lee J, Choi CH, Jo M, Lee YB, Kyun ML, Choi M, Park D, Moon KS. Interspecies transcriptome profiles of human T cell activation and liver inflammation in a xenogeneic graft-versus-host disease model. Heliyon 2024; 10:e40559. [PMID: 39687194 PMCID: PMC11648781 DOI: 10.1016/j.heliyon.2024.e40559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Background Xenogeneic transplantation induces acute graft-versus-host disease (aGvHD) and subsequent vital organ damage. Herein, we aimed to examine hepatic damage associated with aGvHD using histopathology and gene expression profiles. Methods A xenografic GvHD model was established by engrafting human peripheral blood mononuclear cells (PBMCs) into immunodeficient NOD-scid IL2Rγnull (NSG) mice after busulfan conditioning. NSG mice were assigned to groups treated with saline (S group) or a combination of busulfan and PBMCs (BP group). Histological lesions and RNA sequencing analysis of gene profiles in the BP group (GvHD model) were compared with those in the P group. Results Predominant T cell subsets (95 %) in the blood of the BP group were identified as cytotoxic CD8+ T cells (56 %) and helper CD4+ T cells (31 %). Symptoms of aGvHD, including hepatocyte necrosis, bile duct hyperplasia, and human T cell infiltration, were observed. Gene expression analysis revealed upregulation of Th1 and Th2 cell differentiation (STAT4, IL4R, and NFACT1), T cell receptor signaling pathway (CD226 and GBP1), IL-1 pathway (CCL3, NAIP, and IRAK4), cell cycle (CDCA5, CDCA8, MCM5, KNL1, BUB1B, FBXO5, and CENPE) in human cells. In mouse cells, Il1a, Ifngr, Tnfrsf, and Il6ra genes (cytokines or their receptors) and Icam, Vcam, and Endra genes (adhesion molecules) were upregulated, whereas genes related to chromosome condensation (H2ac and H2bc) and fatty acid/steroid metabolism (Fasn, Rdh, and Scd) were downregulated. Interspecies gene network analysis revealed that activated human T cells are associated with liver damage through inflammatory and metabolic pathways, accompanied by increased mouse cell adhesion molecules and cytokines. Conclusion Our findings offer valuable insights into the pathophysiology and biomarkers of aGvHD and may contribute to the development of novel therapeutics.
Collapse
Affiliation(s)
- Seo Yule Jeong
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Duhyeon Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Tamina Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Ji-Seok Han
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jungyun Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Chang Hoon Choi
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Minseong Jo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yu Bin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Mi-lang Kyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Myeongjin Choi
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| |
Collapse
|
2
|
Meeus F, Funeh CN, Awad RM, Zeven K, Autaers D, De Becker A, Van Riet I, Goyvaerts C, Tuyaerts S, Neyns B, Devoogdt N, De Vlaeminck Y, Breckpot K. Preclinical evaluation of antigen-sensitive B7-H3-targeting nanobody-based CAR-T cells in glioblastoma cautions for on-target, off-tumor toxicity. J Immunother Cancer 2024; 12:e009110. [PMID: 39562005 PMCID: PMC11575280 DOI: 10.1136/jitc-2024-009110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/27/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Glioblastoma is the most common lethal primary brain tumor, urging evaluation of new treatment options. Chimeric antigen receptor (CAR)-T cells targeting B7 homolog 3 (B7-H3) are promising because of the overexpression of B7-H3 on glioblastoma cells but not on healthy brain tissue. Nanobody-based (nano)CARs are gaining increasing attention as promising alternatives to classical single-chain variable fragment-based (scFv)CARs, because of their single-domain nature and low immunogenicity. Still, B7-H3 nanoCAR-T cells have not been extensively studied in glioblastoma. METHODS B7-H3 nanoCAR- and scFvCAR-T cells were developed and evaluated in human glioblastoma models. NanoCAR-T cells targeting an irrelevant antigen served as control. T cell activation, cytokine secretion and killing capacity were evaluated in vitro using ELISA, live cell imaging and flow cytometry. Antigen-specific killing was assessed by generating B7-H3 knock-out cells using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-genome editing. The tumor tracing capacity of the B7-H3 nanobody was first evaluated in vivo using nuclear imaging. Then, the therapeutic potential of the nanoCAR-T cells was evaluated in a xenograft glioblastoma model. RESULTS We showed that B7-H3 nanoCAR-T cells were most efficient in lysing B7-H3pos glioblastoma cells in vitro. Lack of glioblastoma killing by control nanoCAR-T cells and lack of B7-H3neg glioblastoma killing by B7-H3 nanoCAR-T cells showed antigen-specificity. We showed in vivo tumor targeting capacity of the B7-H3 nanobody-used for the nanoCAR design-in nuclear imaging experiments. Evaluation of the nanoCAR-T cells in vivo showed tumor control in mice treated with B7-H3 nanoCAR-T cells in contrast to progressive disease in mice treated with control nanoCAR-T cells. However, we observed limiting toxicity in mice treated with B7-H3 nanoCAR-T cells and showed that the B7-H3 nanoCAR-T cells are activated even by low levels of mouse B7-H3 expression. CONCLUSIONS B7-H3 nanoCAR-T cells showed promise for glioblastoma therapy following in vitro characterization, but limiting in vivo toxicity was observed. Off-tumor recognition of healthy mouse tissue by the cross-reactive B7-H3 nanoCAR-T cells was identified as a potential cause for this toxicity, warranting caution when using highly sensitive nanoCAR-T cells, recognizing the low-level expression of B7-H3 on healthy tissue.
Collapse
Affiliation(s)
- Fien Meeus
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Medical Imaging (MIMA), Molecular Imaging and Therapy (MITH) research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cyprine Neba Funeh
- Department of Medical Imaging (MIMA), Molecular Imaging and Therapy (MITH) research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robin Maximilian Awad
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Katty Zeven
- Department of Medical Imaging (MIMA), Molecular Imaging and Therapy (MITH) research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dorien Autaers
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann De Becker
- Department of Hematology, Cellular Therapy Laboratory, University Hospital Brussels, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Ivan Van Riet
- Department of Hematology, Cellular Therapy Laboratory, University Hospital Brussels, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Hematology and Immunology Research Team (HEIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Department of Medical Imaging (MIMA), Molecular Imaging and Therapy (MITH) research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandra Tuyaerts
- Department of Medical Oncology, University Hospital Brussels, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Neyns
- Department of Medical Oncology, University Hospital Brussels, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Department of Medical Imaging (MIMA), Molecular Imaging and Therapy (MITH) research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick De Vlaeminck
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Mikolič V, Pantović-Žalig J, Malenšek Š, Sever M, Lainšček D, Jerala R. Toll-like receptor 4 signaling activation domains promote CAR T cell function against solid tumors. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200815. [PMID: 38840781 PMCID: PMC11152746 DOI: 10.1016/j.omton.2024.200815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a powerful therapeutic approach against a range of hematologic malignancies. While the incorporation of CD28 or 4-1BB costimulatory signaling domains into CARs revolutionized immune responses, there is an exciting prospect of further enhancing CAR functionality. Here, we investigated the design of CD19 CARs enriched with distinct Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), or Toll/IL-1 domain-containing adaptor-inducing interferon (IFN)-β (TRIF) costimulatory domains. Screening of various designs identified several candidates with no tonic activity but with increased CD19 target cell-dependent interleukin (IL)-2 production. Human T cells transduced with the selected CAR construct exhibited augmented hIL-2 and hIFN-γ induction and cytotoxicity when cocultured with CD19-positive lymphoma and solid-tumor cell lines. RNA sequencing (RNA-seq) analysis demonstrated the upregulation of some genes involved in the innate immune response and T cell activation and proliferation. In experiments on a xenogeneic solid-tumor mice model, MyD88 and TLR4 CAR T cells exhibited prolonged remission. This study demonstrates that the integration of a truncated TLR4 signaling costimulatory domain could provide immunotherapeutic potential against both hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Veronika Mikolič
- Department of Hematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Jelica Pantović-Žalig
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Špela Malenšek
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Matjaž Sever
- Department of Hematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Centre for Technologies of Gene and Cell Therapy, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Centre for Technologies of Gene and Cell Therapy, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Ashraf H, Heydarnejad M, Kosari F. The Confounding Role of Graft-Versus-Host Disease in Animal Models of Cancer Immunotherapy: A Systematic Review. ARCHIVES OF IRANIAN MEDICINE 2024; 27:159-167. [PMID: 38685841 PMCID: PMC11097315 DOI: 10.34172/aim.2024.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/14/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Cancer immunotherapy has emerged as a transformative approach for treating various malignancies, including melanoma, lung cancer, breast cancer, and leukemia. Animal models have been instrumental in elucidating the mechanisms and potential of these therapies. However, graft-versus-host disease (GVHD) is an inherent challenge in these studies, primarily because the introduction of foreign immune cells or tissues often triggers immune responses. METHODS A detailed systematic search was conducted across various scientific databases, including PubMed, Scopus, Embase, and Web of Science. The search aimed to identify peer-reviewed articles published in English from January 2000 to September 2023. Keywords and phrases used in the search included "Graft-versus-Host Disease", "GVHD", "animal models", "cancer immunotherapy", and combinations thereof. Boolean operators (AND/OR) were employed to refine the search. Finally, 6 articles were included in this systematic review, which is registered on PROSPERO (ID number CRD42024488544). RESULTS Our systematic review identified several mechanisms employed in animal studies to mitigate the confounding effects of GVHD. These included genetically modified mouse models, immunosuppressive drugs, and humanized mice. Furthermore, the review highlights innovative approaches such as selective T-cell depletion and the use of specific cytokine inhibitors. CONCLUSION By systematically identifying and mitigating the confounding effects of GVHD, we can significantly improve the predictive validity of preclinical trials, obtain broadly applicable findings, improve the efficiency of drugs, enhance safety profiling, and develop better therapeutic strategies. This approach is crucial in ensuring that the immunotherapeutic strategies developed in the laboratory are reflective of the human physiological response, thereby bridging a critical translational gap in oncological research.
Collapse
Affiliation(s)
- Hami Ashraf
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heydarnejad
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Kosari
- Department of Pathology, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Cuthbertson P, Button A, Sligar C, Elhage A, Vine KL, Watson D, Sluyter R. Post-Transplant Cyclophosphamide Combined with Brilliant Blue G Reduces Graft-versus-Host Disease without Compromising Graft-versus-Leukaemia Immunity in Humanised Mice. Int J Mol Sci 2024; 25:1775. [PMID: 38339054 PMCID: PMC10855770 DOI: 10.3390/ijms25031775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Allogeneic haematopoietic stem cell transplantation (HSCT) leads to the establishment of graft-versus-leukaemia (GVL) immunity, but in many cases also results in the development of graft-versus-host disease (GVHD). This study aimed to determine if P2X7 antagonism using Brilliant Blue G (BBG) could improve the beneficial effects of post-transplant cyclophosphamide (PTCy) in a humanised mouse model of GVHD, without comprising GVL immunity. NOD.Cg-Prkdcscid Il2rgtm1Wjl (NSG) mice were injected with human peripheral blood mononuclear cells (PBMCs) (Day 0), then with cyclophosphamide (33 mg/kg) on Days 3 and 4, and with BBG (50 mg/kg) (or saline) on Days 0-10. PTCy with BBG reduced clinical GVHD development like that of PTCy alone. However, histological analysis revealed that the combined treatment reduced liver GVHD to a greater extent than PTCy alone. Flow cytometric analyses revealed that this reduction in liver GVHD by PTCy with BBG corresponded to an increase in human splenic CD39+ Tregs and a decrease in human serum interferon-γ concentrations. In additional experiments, humanised NSG mice, following combined treatment, were injected with human THP-1 acute myeloid leukaemia cells on Day 14. Flow cytometric analyses of liver CD33+ THP-1 cells showed that PTCy with BBG did not mitigate GVL immunity. In summary, PTCy combined with BBG can reduce GVHD without compromising GVL immunity. Future studies investigating P2X7 antagonism in combination with PTCy may lead to the development of novel treatments that more effectively reduce GVHD in allogeneic HSCT patients without promoting leukaemia relapse.
Collapse
Affiliation(s)
- Peter Cuthbertson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (P.C.); (A.B.); (C.S.); (A.E.); (K.L.V.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Amy Button
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (P.C.); (A.B.); (C.S.); (A.E.); (K.L.V.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Chloe Sligar
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (P.C.); (A.B.); (C.S.); (A.E.); (K.L.V.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Amal Elhage
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (P.C.); (A.B.); (C.S.); (A.E.); (K.L.V.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Kara L. Vine
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (P.C.); (A.B.); (C.S.); (A.E.); (K.L.V.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (P.C.); (A.B.); (C.S.); (A.E.); (K.L.V.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (P.C.); (A.B.); (C.S.); (A.E.); (K.L.V.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
6
|
Harada T, Kikushige Y, Miyamoto T, Uno K, Niiro H, Kawakami A, Koga T, Akashi K, Yoshizaki K. Peripheral helper-T-cell-derived CXCL13 is a crucial pathogenic factor in idiopathic multicentric Castleman disease. Nat Commun 2023; 14:6959. [PMID: 37907518 PMCID: PMC10618253 DOI: 10.1038/s41467-023-42718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Castleman disease (CD) is a rare lymphoproliferative disorder. Among subtypes of CD, idiopathic multicentric CD-not otherwise specified (iMCD-NOS) has a poor prognosis and its pathogenesis is largely unknown. Here we present a xenotransplantation model of iMCD-NOS pathogenesis. Immunodeficient mice, transplanted with lymph node (LN) cells from iMCD-NOS patients, develop iMCD-like lethal inflammation, while mice transplanted with LN cells from non-iMCD patients without inflammation serve as negative control. Grafts depleted of human CD3+ T cells fail to induce inflammation in vivo. Upon engraftment, peripheral helper T (Tph) cells expand and levels of human CXCL13 substantially increase in the sera of mice. A neutralizing antibody against human CXCL13 blocks development of inflammation and improves survival in the recipient mice. Our study thus indicates that Tph cells, producing CXCL13 play a critical role in the pathogenesis of iMCD-NOS, and establishes iMCD-NOS as an immunoregulatory disorder.
Collapse
Affiliation(s)
- Takuya Harada
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Toshihiro Miyamoto
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Kazuko Uno
- Luis Pasteur Center for Medical Research, Kyoto, Japan
| | - Hiroaki Niiro
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan.
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan.
| | - Kazuyuki Yoshizaki
- The Institute of Scientific and Industrial Research, SANKEN, Osaka University, Osaka, Japan.
- Medical corporation of Tokushukai, Osaka, Japan.
| |
Collapse
|
7
|
Elhage A, Cuthbertson P, Sligar C, Watson D, Sluyter R. A Species-Specific Anti-Human P2X7 Monoclonal Antibody Reduces Graft-versus-Host Disease in Humanised Mice. Pharmaceutics 2023; 15:2263. [PMID: 37765233 PMCID: PMC10536354 DOI: 10.3390/pharmaceutics15092263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a T cell-mediated inflammatory disorder that arises from allogeneic haematopoietic stem cell transplantation and is often fatal. The P2X7 receptor is an extracellular adenosine 5'-triphosphate-gated cation channel expressed on immune cells. Blockade of this receptor with small molecule inhibitors impairs GVHD in a humanised mouse model. A species-specific blocking monoclonal antibody (mAb) (clone L4) for human P2X7 is available, affording the opportunity to determine whether donor (human) P2X7 contributes to the development of GVHD in humanised mice. Using flow cytometric assays of human RPMI 8266 and murine J774 cells, this study confirmed that this mAb bound and impaired human P2X7. Furthermore, this mAb prevented the loss of human regulatory T cells (hTregs) and natural killer (hNK) T cells in vitro. NOD-scid IL2Rγnull mice were injected with 10 × 106 human peripheral blood mononuclear cells (Day 0) and an anti-hP2X7 or control mAb (100 μg i.p. per mouse, Days 0, 2, 4, 6, and 8). The anti-hP2X7 mAb increased hTregs and hNK cells at Day 21. Moreover, anti-hP2X7 mAb-treatment reduced clinical and histological GVHD in the liver and lung compared to the control treatment at disease endpoint. hTregs, hNK, and hNK T cell proportions were increased, and human T helper 17 cell proportions were decreased at endpoint. These studies indicate that blockade of human (donor) P2X7 reduces GVHD development in humanised mice, providing the first direct evidence of a role for donor P2X7 in GVHD.
Collapse
Affiliation(s)
- Amal Elhage
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (A.E.); (P.C.); (C.S.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Peter Cuthbertson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (A.E.); (P.C.); (C.S.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Chloe Sligar
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (A.E.); (P.C.); (C.S.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (A.E.); (P.C.); (C.S.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (A.E.); (P.C.); (C.S.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Sligar C, Cuthbertson P, Miles NA, Adhikary SR, Elhage A, Zhang G, Alexander SI, Sluyter R, Watson D. Tocilizumab increases regulatory T cells, reduces natural killer cells and delays graft-versus-host disease development in humanized mice treated with post-transplant cyclophosphamide. Immunol Cell Biol 2023. [PMID: 37191045 DOI: 10.1111/imcb.12652] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication following donor hematopoietic stem cell transplantation, where donor T cells damage host tissues. This study investigated the effect of tocilizumab (TOC) combined with post-transplant cyclophosphamide (PTCy) on immune cell engraftment and GVHD development in a humanized mouse model. NOD-scid-IL2Rγnull (NSG) mice were injected intraperitoneally with 2 × 107 human (h) peripheral blood mononuclear cells and cyclophosphamide (33 mg kg-1 ) or saline on days 3 and 4, then TOC or control antibody (0.5 mg mouse-1 ) twice weekly for 28 days. Mice were monitored for clinical signs of GVHD for either 28 or 70 days. Spleens and livers were assessed for human leukocyte subsets, and serum cytokines and tissue histology were analyzed. In the short-term model (day 28), liver and lung damage were reduced in PTCy + TOC compared with control mice. All groups showed similar splenic hCD45+ leukocyte engraftment (55-60%); however, PTCy + TOC mice demonstrated significantly increased (1.5-2-fold) splenic regulatory T cells. Serum human interferon gamma was significantly reduced in PTCy + TOC compared with control mice. Long-term (day 70), prolonged survival was similar in PTCy + TOC (median survival time, > 70 days) and PTCy mice (median survival time, 56 days). GVHD onset was significantly delayed in PTCy + TOC, compared with TOC or control mice. Notably, natural killer cells were reduced (77.5%) in TOC and PTCy + TOC mice. Overall, combining PTCy with TOC increases regulatory T cells and reduces clinical signs of early GVHD, but does not improve long-term survival compared with PTCy alone.
Collapse
Affiliation(s)
- Chloe Sligar
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Peter Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Nicole A Miles
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Sam R Adhikary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Amal Elhage
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Geoff Zhang
- The Centre for Kidney Research, The Children's Hospital at Westmead, NSW, Westmead, Australia
| | - Stephen I Alexander
- The Centre for Kidney Research, The Children's Hospital at Westmead, NSW, Westmead, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
9
|
Sluyter R, Cuthbertson P, Elhage A, Sligar C, Watson D. Purinergic signalling in graft-versus-host disease. Curr Opin Pharmacol 2023; 68:102346. [PMID: 36634595 DOI: 10.1016/j.coph.2022.102346] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is used to treat blood cancers, but often results in lethal graft-versus-host disease (GVHD). GVHD is an inflammatory disorder mediated by donor leukocytes that damage host tissues. Purinergic signalling plays important roles in GVHD development in mice but studies of these pathways in human GVHD remain limited. P2X7 receptor activation by ATP on host antigen presenting cells contributes to the induction of GVHD, while activation of this receptor on regulatory T cells, myeloid-derived suppressor cells and possibly type 3 innate lymphoid cells results in their loss to promote GVHD progression. In contrast, A2A receptor activation by adenosine on donor T cells serves to restrict GVHD development. These and other purinergic signalling molecules remain potential biomarkers and therapeutic targets in GVHD.
Collapse
Affiliation(s)
- Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Peter Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Amal Elhage
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Chloe Sligar
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
10
|
Harrell CR, Djonov V, Volarevic V. Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Ocular Graft-Versus-Host Disease. Int J Mol Sci 2022; 23:13254. [PMID: 36362040 PMCID: PMC9656879 DOI: 10.3390/ijms232113254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 01/01/2024] Open
Abstract
Ocular GVHD (oGVHD), manifested by severe injury of corneal epithelial cells, meibomian and lacrimal glands' dysfunction, is a serious complication of systemic GVHD which develops as a consequence of donor T and natural killer cell-driven inflammation in the eyes of patients who received allogeneic hematopoietic stem cell transplantation. Mesenchymal stem cells (MSC) are, due to their enormous differentiation potential and immunosuppressive characteristics, considered as a potentially new remedy in ophthalmology. MSC differentiate in corneal epithelial cells, suppress eye inflammation, and restore meibomian and lacrimal glands' function in oGVHD patients. MSC-sourced exosomes (MSC-Exos) are extracellular vesicles that contain MSC-derived growth factors and immunoregulatory proteins. Due to the lipid membrane and nano-sized dimension, MSC-Exos easily by-pass all biological barriers in the eyes and deliver their cargo directly in injured corneal epithelial cells and eye-infiltrated leukocytes, modulating their viability and function. As cell-free agents, MSC-Exos address all safety issues related to the transplantation of their parental cells, including the risk of unwanted differentiation and aggravation of intraocular inflammation. In this review article, we summarized current knowledge about molecular mechanisms which are responsible for beneficial effects of MSC and MSC-Exos in the therapy of inflammatory eye diseases, emphasizing their therapeutic potential in the treatment of oGVHD.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Vladislav Volarevic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| |
Collapse
|