1
|
Lica JJ, Pradhan B, Safi K, Jakóbkiewicz-Banecka J, Hellmann A. Promising Therapeutic Strategies for Hematologic Malignancies: Innovations and Potential. Molecules 2024; 29:4280. [PMID: 39275127 PMCID: PMC11397263 DOI: 10.3390/molecules29174280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
In this review we explore innovative approaches in the treatment of hematologic cancers by combining various therapeutic modalities. We discuss the synergistic potential of combining inhibitors targeting different cellular pathways with immunotherapies, molecular therapies, and hormonal therapies. Examples include combining PI3K inhibitors with proteasome inhibitors, NF-κB inhibitors with immunotherapy checkpoint inhibitors, and neddylation inhibitors with therapies targeting the tumor microenvironment. Additionally, we discuss the potential use of small molecules and peptide inhibitors in hematologic cancer treatment. These multidimensional therapeutic combinations present promising strategies for enhancing treatment efficacy and overcoming resistance mechanisms. However, further clinical research is required to validate their effectiveness and safety profiles in hematologic cancer patients.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Faculty of Health Science, Powiśle University, 80-214 Gdańsk, Poland
| | - Bhaskar Pradhan
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Kawthar Safi
- Department of Biochemistry and Clinical Chemistry, Faculty of Biology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| |
Collapse
|
2
|
Wu M, Li A, Zhang T, Ding W, Wei Y, Wan C, Ke B, Cheng H, Jin C, Kong C. The novel prognostic analysis of AML based on ferroptosis and cuproptosis related genes. J Trace Elem Med Biol 2024; 86:127517. [PMID: 39270538 DOI: 10.1016/j.jtemb.2024.127517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematological malignancy. The aim of this research was to develop a ferroptosis and cuproptosis related novel prognostic signature associated with AML. METHODS The ferroptosis and cuproptosis related genes correlated with the prognosis of AML were identified by univariate Cox analysis. The consistent cluster analysis was performed for 150 AML patients in TCGA dataset. The key module genes associated with GSVA score of ferroptosis and cuproptosis were identified by WGCNA. univariate Cox and LASSO regression analysis were adopted to build a ferroptosis and cuproptosis AML prognostic signature. Finally, the expression of five prognostic genes in clinical tissue samples were verified by RT-qPCR. RESULTS A grand total of 27 FCRGs associated with AML prognosis were identified.Then, two AML sub-types with significantly different survival were obtained. We found 3 significantly differential expressed immune cells (naive CD4 cells, regulatory T cells and resting mast cells) between two risk sub-groups. Meanwhile, 'IL6 JAK STAT3 signaling' and 'P53 pathway' were enriched in low-risk group. A ferroptosis and cuproptosis related prognostic signature was build based on 8 prognostic genes. RT-qPCR results indicated that there was no significant difference in the expression of OLFML2A and CD109 between AML and normal samples. However, compared to the control group, LGALS1, SOCS1, and RHOC showed significantly lower expression in the AML group. CONCLUSION The prognostic signature comprised of OLFML2A, LGALS1, ABCB11, SOCS1, RHOC, CD109, RD3L and PTPN13 based on ferroptosis and cuproptosis was established, which provided theoretical basis for the research of AML.
Collapse
Affiliation(s)
- Mei Wu
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Anan Li
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Tingting Zhang
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Weirong Ding
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Yujing Wei
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Caishui Wan
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Bo Ke
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Hongbo Cheng
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Chenghao Jin
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Chunfang Kong
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| |
Collapse
|
3
|
Chen M, Liu Y, Zuo M, Guo C, Du Y, Xu H, Liu B, Li M, Xiao W, Yu G. NEDD8 enhances Hippo signaling by mediating YAP1 neddylation. J Biol Chem 2024; 300:107512. [PMID: 38960037 PMCID: PMC11327456 DOI: 10.1016/j.jbc.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024] Open
Abstract
The Hippo-YAP signaling pathway plays a central role in many biological processes such as regulating cell fate, organ size, and tissue growth, and its key components are spatiotemporally expressed and posttranslationally modified during these processes. Neddylation is a posttranslational modification that involves the covalent attachment of NEDD8 to target proteins by NEDD8-specific E1-E2-E3 enzymes. Whether neddylation is involved in Hippo-YAP signaling remains poorly understood. Here, we provide evidence supporting the critical role of NEDD8 in facilitating the Hippo-YAP signaling pathway by mediating neddylation of the transcriptional coactivator yes-associated protein 1 (YAP1). Overexpression of NEDD8 induces YAP1 neddylation and enhances YAP1 transactivity, but inhibition of neddylation suppresses YAP1 transactivity and attenuates YAP1 nuclear accumulation. Furthermore, inhibition of YAP1 signaling promotes MLN4924-induced ovarian granulosa cells apoptosis and disruption of nedd8 in zebrafish results in downregulation of yap1-activated genes and upregulation of yap1-repressed genes. Further assays show that the xiap ligase promotes nedd8 conjugates to yap1 and that yap1 neddylation. In addition, we identify lysine 159 as a major neddylation site on YAP1. These findings reveal a novel mechanism for neddylation in the regulation of Hippo-YAP signaling.
Collapse
Affiliation(s)
- Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Yuqing Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Mingzhong Zuo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Chaohui Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Yongkun Du
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Bianzhi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, People's Republic of China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China.
| |
Collapse
|
4
|
Yang J, Ma Y, Li B, Xi Z, Zhang L, Wang Y, Feng W. Roles of Nucleolar Factor RCL1 in Itraconazole Resistance of Clinical Candida albicans Under Different Stress Conditions. Infect Drug Resist 2024; 17:769-777. [PMID: 38433785 PMCID: PMC10908289 DOI: 10.2147/idr.s431024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose RNA terminal phosphate cyclase like 1 (RCL1) undergoes overexpression during the immune response of Candida albicans following drug treatment. This study aims to investigate the expression levels of RCL1 in C. albicans under various stress conditions. Methods Fifteen itraconazole (ITR)-resistant strains of clinical C. albicans, and one standard strain were employed for RCL1 sequencing, and mutations in RCL1 were analyzed. Subsequently, 14 out of the 15 ITR-resistant clinical strains and 14 clinical strains sensitive to ITR, fluconazole (FCA) as well as voriconazole (VRC) were cultured under diverse conditions. The expression of RCL1 ITR-resistant and sensitive C. albicans was then assessed using real-time quantitative PCR (RT-qPCR) assays. Results Compared to the standard strain, three missense mutations (C6A, G10A, and A11T) were identified in the RCL1 gene of ITR-resistant C. albicans through successful forward sequencing. Additionally, using successful reverse sequencing, one synonymous mutation (C1T) and four missense mutations (C1T, A3T, A7G, and T8G) were found in the RCL1 gene of ITR-resistant C. albicans. RCL1 expression was significantly higher in ITR-resistant C. albicans than in sensitive strains under standard conditions (37°C, 0.03% CO2, pH 4.0). Low temperature (25°C) increased RCL1 expression in sensitive C. albicans while decreasing it in ITR-resistant strains. Elevated CO2 concentrations (5% CO2) had a negligible effect on RCL1 expression in sensitive C. albicans, but effectively reduced RCL1 level in ITR-resistant strains. Furthermore, a medium with a pH of 7 decreased the expression of RCL1 in both resistant and sensitive C. albicans. Conclusion This study demonstrated that RCL1 mutations in ITR-resistant C. albicans, and variations in culture conditions significantly influence RCL1 expression in both ITR-resistant and sensitive C. albicans, thereby inducing alterations in the dimorphism of C. albicans.
Collapse
Affiliation(s)
- Jing Yang
- Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Yan Ma
- Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Bo Li
- Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Zhiqin Xi
- Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Li Zhang
- Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Yuxi Wang
- Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Wenli Feng
- Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| |
Collapse
|
5
|
Zhang H, Yang J, Song Q, Ding X, Sun F, Yang L. UBA3 promotes the occurrence and metastasis of intrahepatic cholangiocarcinoma through MAPK signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:199-209. [PMID: 38298057 PMCID: PMC10984854 DOI: 10.3724/abbs.2024014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 02/02/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) accounts for approximately 15% of primary liver cancers, and the incidence rate has been increasing in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to identify signature genes. The aim of this study is to screen the signature genes of ICC and find the potential target for the treatment of ICC. We find that UBA3 is highly expressed in ICC, and knockdown of UBA3 inhibits ICC proliferation, invasion and migration. Mechanistic experiments show that UBA3 promotes ICC proliferation, invasion and migration by affecting ANXA2 through the MAPK signaling pathway. UBA3 is a target of bufalin, and bufalin targeting UBA3 inhibits ICC development and progression through the MAPK signaling pathway. In conclusion, our study shows that bufalin inhibits ICC by targeting UBA3, which has emerged as a new biomarker and potential therapeutic target for ICC.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell BiologyBasic Medical CollegeQingdao UniversityQingdao266071China
| | - Jiahua Yang
- School of Basic MedicineQingdao UniversityQingdao266071China
- Institute of Brain Science and DiseaseShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological DisordersQingdao UniversityQingdao266071China
| | - Qinghang Song
- College of MedicineQingdao UniversityQingdao266071China
| | - Xiaoyan Ding
- Department of Genetics and Cell BiologyBasic Medical CollegeQingdao UniversityQingdao266071China
| | - Fulin Sun
- College of MedicineQingdao UniversityQingdao266071China
| | - Lina Yang
- Department of Genetics and Cell BiologyBasic Medical CollegeQingdao UniversityQingdao266071China
| |
Collapse
|
6
|
Pérez-González A, Ramírez-Díaz I, Guzmán-Linares J, Sarvari P, Sarvari P, Rubio K. ncRNAs Orchestrate Chemosensitivity Induction by Neddylation Blockades. Cancers (Basel) 2024; 16:825. [PMID: 38398217 PMCID: PMC10886669 DOI: 10.3390/cancers16040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
We performed an integrative transcriptomic in silico analysis using lung adenocarcinoma A549 cells treated with the neddylation inhibitor MLN4924 and the gefitinib-resistant PC9 cell line (PC9GR). We focused on the transcriptional effects of the top differentially expressed ncRNA biotypes and their correlating stemness factors. Interestingly, MLN4924-treated cells showed a significant upregulation of mRNAs involved in carcinogenesis, cell attachment, and differentiation pathways, as well as a parallel downregulation of stemness maintenance and survival signaling pathways, an effect that was inversely observed in PC9GR cells. Moreover, we found that stemness factor expression could be contrasted by selected up-regulated ncRNAs upon MLN4924 treatment in a dose and time-independent manner. Furthermore, upregulated miRNAs and lncRNA-targeted mRNAs showed an evident enrichment of proliferation, differentiation, and apoptosis pathways, while downregulated ncRNA-targeted mRNAs were implicated in stem cell maintenance. Finally, our results proved that stemness (KLF4 and FGFR2) and epithelial-mesenchymal transition (ZEB2, TWIST2, SNAI2, CDH2, and VIM) factors, which are highly expressed in PC9GR cells compared to gefitinib-sensitive PC9 cells, could be abrogated with the neddylation inhibitor MLN4924 mainly through activation of epithelial differentiation pathways, thus exerting a protective role in lung cancer cells and chemosensitivity against lung tumorigenic transformation.
Collapse
Affiliation(s)
- Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
- Faculty of Biotechnology, Popular and Autonomous, University of Puebla State (UPAEP), Puebla 72410, Mexico
| | - Josué Guzmán-Linares
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
| | - Pouya Sarvari
- Iran National Elite Foundation (INEF), Tehran 1461965381, Iran; (P.S.); (P.S.)
| | - Pourya Sarvari
- Iran National Elite Foundation (INEF), Tehran 1461965381, Iran; (P.S.); (P.S.)
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
| |
Collapse
|
7
|
Fu DJ, Wang T. Targeting NEDD8-activating enzyme for cancer therapy: developments, clinical trials, challenges and future research directions. J Hematol Oncol 2023; 16:87. [PMID: 37525282 PMCID: PMC10388525 DOI: 10.1186/s13045-023-01485-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
NEDDylation, a post-translational modification through three-step enzymatic cascades, plays crucial roles in the regulation of diverse biological processes. NEDD8-activating enzyme (NAE) as the only activation enzyme in the NEDDylation modification has become an attractive target to develop anticancer drugs. To date, numerous inhibitors or agonists targeting NAE have been developed. Among them, covalent NAE inhibitors such as MLN4924 and TAS4464 currently entered into clinical trials for cancer therapy, particularly for hematological tumors. This review explains the relationships between NEDDylation and cancers, structural characteristics of NAE and multistep mechanisms of NEDD8 activation by NAE. In addition, the potential approaches to discover NAE inhibitors and detailed pharmacological mechanisms of NAE inhibitors in the clinical stage are explored in depth. Importantly, we reasonably investigate the challenges of NAE inhibitors for cancer therapy and possible development directions of NAE-targeting drugs in the future.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
8
|
King EA, Cho Y, Hsu NS, Dovala D, McKenna JM, Tallarico JA, Schirle M, Nomura DK. Chemoproteomics-enabled discovery of a covalent molecular glue degrader targeting NF-κB. Cell Chem Biol 2023; 30:394-402.e9. [PMID: 36898369 PMCID: PMC10121878 DOI: 10.1016/j.chembiol.2023.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 01/11/2023] [Accepted: 02/16/2023] [Indexed: 03/11/2023]
Abstract
Targeted protein degradation has arisen as a powerful therapeutic modality for degrading disease targets. While proteolysis-targeting chimera (PROTAC) design is more modular, the discovery of molecular glue degraders has been more challenging. Here, we have coupled the phenotypic screening of a covalent ligand library with chemoproteomic approaches to rapidly discover a covalent molecular glue degrader and associated mechanisms. We have identified a cysteine-reactive covalent ligand EN450 that impairs leukemia cell viability in a NEDDylation and proteasome-dependent manner. Chemoproteomic profiling revealed covalent interaction of EN450 with an allosteric C111 in the E2 ubiquitin-conjugating enzyme UBE2D. Quantitative proteomic profiling revealed the degradation of the oncogenic transcription factor NFKB1 as a putative degradation target. Our study thus puts forth the discovery of a covalent molecular glue degrader that uniquely induced the proximity of an E2 with a transcription factor to induce its degradation in cancer cells.
Collapse
Affiliation(s)
- Elizabeth A King
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720, USA; Innovative Genomics Institute, Berkeley, CA 94704, USA
| | - Yoojin Cho
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720, USA; Innovative Genomics Institute, Berkeley, CA 94704, USA
| | - Nathan S Hsu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720, USA; Innovative Genomics Institute, Berkeley, CA 94704, USA
| | - Dustin Dovala
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720, USA; Novartis Institutes for BioMedical Research, Emeryville, CA 94608, USA
| | - Jeffrey M McKenna
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720, USA; Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - John A Tallarico
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720, USA; Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Markus Schirle
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720, USA; Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720, USA; Innovative Genomics Institute, Berkeley, CA 94704, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|