1
|
Guerrero PA, Murakami Y, Malik A, Seeberger PH, Kinoshita T, Varón Silva D. Rescue of Glycosylphosphatidylinositol-Anchored Protein Biosynthesis Using Synthetic Glycosylphosphatidylinositol Oligosaccharides. ACS Chem Biol 2021; 16:2297-2306. [PMID: 34618440 PMCID: PMC8609528 DOI: 10.1021/acschembio.1c00465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The attachment of proteins to the cell membrane using a glycosylphosphatidylinositol (GPI) anchor is a ubiquitous process in eukaryotic cells. Deficiencies in the biosynthesis of GPIs and the concomitant production of GPI-anchored proteins lead to a series of rare and complicated disorders associated with inherited GPI deficiencies (IGDs) in humans. Currently, there is no treatment for patients suffering from IGDs. Here, we report the design, synthesis, and use of GPI fragments to rescue the biosynthesis of GPI-anchored proteins (GPI-APs) caused by mutation in genes involved in the assembly of GPI-glycolipids in cells. We demonstrated that the synthetic fragments GlcNAc-PI (1), Man-GlcN-PI (5), and GlcN-PI with two (3) and three lipid chains (4) rescue the deletion of the GPI biosynthesis in cells devoid of the PIGA, PIGL, and PIGW genes in vitro. The compounds allowed for concentration-dependent recovery of GPI biosynthesis and were highly active on the cytoplasmic face of the endoplasmic reticulum membrane. These synthetic molecules are leads for the development of treatments for IGDs and tools to study GPI-AP biosynthesis.
Collapse
Affiliation(s)
- Paula A. Guerrero
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14424 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Yoshiko Murakami
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Osaka 565-0871, Japan
- Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-Oka, Osaka 565-0871, Japan
| | - Ankita Malik
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14424 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14424 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Osaka 565-0871, Japan
- Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-Oka, Osaka 565-0871, Japan
| | - Daniel Varón Silva
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14424 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
2
|
Rush JS, Waechter CJ. Functional reconstitution into proteoliposomes and partial purification of a rat liver ER transport system for a water-soluble analogue of mannosylphosphoryldolichol. Biochemistry 2004; 43:7643-52. [PMID: 15182207 DOI: 10.1021/bi036083o] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mannosylphosphoryldolichol (Man-P-Dol) is synthesized on the cytosolic leaflet of the rough endoplasmic reticulum (ER), and functions as a mannosyl donor in the biosynthesis of Glc(3)Man(9)GlcNAc(2)-P-P-Dol after being translocated to the lumenal leaflet. An assay, based on the transport of Man-P-citronellol (Man-P-Dol(10)), a water-soluble analogue of Man-P-Dol(95), into sealed microsomal vesicles, has been devised to identify protein(s) (flippases) that could mediate the thermodynamically unfavorable movement of Man-P-Dol between the two leaflets of the ER. To develop a defined system for the systematic investigation of the properties of the Man-P-Dol(10) transporter, and as an initial step toward purification of the protein(s) involved in the transport of Man-P-Dol(10), the activity has been solubilized from rat liver microsomes with n-octyl-beta-D-glucoside and reconstituted into proteoliposomes (approximately 0.1 microm in diameter). The properties of the reconstituted Man-P-Dol(10) transport system are similar to the Man-P-Dol(10) uptake activity in microsomal vesicles from rat liver. Man-P-Dol(10) transport into reconstituted proteoliposomes is time-dependent, reversible, saturable, and stereoselective. The direct role of ER proteins in the functionally reconstituted transport system is supported by the inhibitory effects of trypsin treatment, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), or diethylpyrocarbonate (DEPC). Solubilization and functional reconstitution are shown to provide an experimental approach to the partial purification of the protein(s) mediating the transport process.
Collapse
Affiliation(s)
- Jeffrey S Rush
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
3
|
Hegge FT, Hitchen PG, Aas FE, Kristiansen H, Løvold C, Egge-Jacobsen W, Panico M, Leong WY, Bull V, Virji M, Morris HR, Dell A, Koomey M. Unique modifications with phosphocholine and phosphoethanolamine define alternate antigenic forms of Neisseria gonorrhoeae type IV pili. Proc Natl Acad Sci U S A 2004; 101:10798-803. [PMID: 15249686 PMCID: PMC490014 DOI: 10.1073/pnas.0402397101] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several major bacterial pathogens and related commensal species colonizing the human mucosa express phosphocholine (PC) at their cell surfaces. PC appears to impact host-microbe biology by serving as a ligand for both C-reactive protein and the receptor for platelet-activating factor. Type IV pili of Neisseria gonorrhoeae (Ng) and Neisseria meningitidis, filamentous protein structures critical to the colonization of their human hosts, are known to react variably with monoclonal antibodies recognizing a PC epitope. However, the structural basis for this reactivity has remained elusive. To address this matter, we exploited the finding that the PilE pilin subunit in Ng mutants lacking the PilV protein acquired the PC epitope independent of changes in pilin primary structure. Specifically, we show by using mass spectrometry that PilE derived from the pilV background is composed of a mixture of subunits bearing O-linked forms of either phosphoethanolamine (PE) or PC at the same residue, whereas the wild-type background carries only PE at that same site. Therefore, PilV can influence pilin structure and antigenicity by modulating the incorporation of these alternative modifications. The disaccharide covalently linked to Ng pilin was also characterized because it is present on the same peptides bearing the PE and PC modifications and, contrary to previous reports, was found to be linked by means of 2,4-diacetamido-2,4,6-trideoxyhexose. Taken together, these findings provide new insights into Ng type IV pilus structure and antigenicity and resolve long-standing issues regarding the nature of both the PC epitope and the pilin glycan.
Collapse
Affiliation(s)
- Finn Terje Hegge
- Centre for Molecular Biology and Neuroscience, University of Oslo, 0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hwa KY. Glycosyl phosphatidylinositol-linked glycoconjugates: structure, biosynthesis and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 491:207-14. [PMID: 14533800 DOI: 10.1007/978-1-4615-1267-7_15] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The purpose of this review is to summarize the most recent advances on GPI research. Structural studies on GPI-linked glycoconjugates indicate that there are significant variations in different organisms, although there is a conserved core structure. Furthermore, structural studies suggest that in different cell types, there is an army of glycosyltransferases dedicated to the synthesis of GPI-linked glycoconjugates. Biochemical studies on the synthesis of these GPI-linked glycoconjugates suggest that not only many different enzymes are involved but also that enzymes from different cell types, involving in the conserved core structure can have different substrate specificity. Genetic cloning of the yeast genes involved in synthesizing the core structure suggests that many of these enzymes also have human homologues. However, paroxysmal nocturnal hemogobinuria (PNH) is the only known human disease associated with the synthesis of GPI-linked glycoconjugates. Functional studies suggest that GPI-anchor can act as a signal for protein sorting and localization. Furthermore, GPI-linked receptors play an important role in T-cell activation.
Collapse
Affiliation(s)
- K Y Hwa
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
5
|
Baumann NA, Vidugiriene J, Machamer CE, Menon AK. Cell surface display and intracellular trafficking of free glycosylphosphatidylinositols in mammalian cells. J Biol Chem 2000; 275:7378-89. [PMID: 10702311 DOI: 10.1074/jbc.275.10.7378] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In addition to serving as membrane anchors for cell surface proteins, glycosylphosphatidylinositols (GPIs) can be found abundantly as free glycolipids in mammalian cells. In this study we analyze the subcellular distribution and intracellular transport of metabolically radiolabeled GPIs in three different cell lines. We use a variety of membrane isolation techniques (subcellular fractionation, plasma membrane vesiculation to isolate pure plasma membrane fractions, and enveloped viruses to sample cellular membranes) to provide direct evidence that free GPIs are not confined to their site of synthesis, the endoplasmic reticulum, but can redistribute to populate other subcellular organelles. Over short labeling periods (2.5 h), radiolabeled GPIs were found at similar concentration in all subcellular fractions with the exception of a mitochondria-enriched fraction where GPI concentration was low. Pulse-chase experiments over extended chase periods showed that although the total amount of cellular radiolabeled GPIs decreased, the plasma membrane complement of labeled GPIs increased. GPIs at the plasma membrane were found to populate primarily the exoplasmic leaflet as detected using periodate oxidation of the cell surface. Transport of GPIs to the cell surface was inhibited by Brefeldin A and blocked at 15 degrees C, suggesting that GPIs are transported to the plasma membrane via a vesicular mechanism. The rate of transport of radiolabeled GPIs to the cell surface was found to be comparable with the rate of secretion of newly synthesized soluble proteins destined for the extracellular space.
Collapse
Affiliation(s)
- N A Baumann
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
6
|
Duszenko M, Kang X, Böhme U, Hömke R, Lehner M. In vitro translation in a cell-free system from Trypanosoma brucei yields glycosylated and glycosylphosphatidylinositol-anchored proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:789-97. [PMID: 10583372 DOI: 10.1046/j.1432-1327.1999.00897.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
African trypanosomes escape many cellular and unspecific immune reactions by the expression of a protective barrier formed from a repertoire of several hundred genes encoding immunologically distinct variant surface glycoproteins (VSGs). All mature VSGs are glycosylphosphatidylionositol-anchored and N-glycosylated. To study trypanosome-specific post-translational modifications of VSG, a cell-free system capable of in vitro translation, translocation into the rough endoplasmic reticulum, N-glycosylation and glycosylphosphatidylinositol-anchor addition was established using lysates of the bloodstream form of Trypanosoma brucei. Monitoring protein synthesis by [35S]methionine incorporation, labeled protein bands were readily detected by fluorography following SDS/PAGE. Appearance of these bands increased during a time-course of 45 min and was sensitive to cycloheximide but not chloramphenicol treatment. Efficiency of this system, in terms of incorporation of radiolabeled amino acids into newly formed proteins, is similar to reticulocyte lysates. The system does not, however, allow initiation of protein synthesis. Depending on the clone used, immunoprecipitation revealed one or two newly formed VSG bands. Upon digestion with N-glycosidase F these bands resulted in a single band of a lower apparent molecular mass, indicating that newly synthesized VSG underwent translocation and glycosylation in the cell-free system. Biotinylation of VSG and a combination of precipitation with immobilized avidin and detection of VSG using antibodies specific for clones and cross-reacting determinants revealed that newly formed VSG contained the glycosylphosphatidylinositol anchor.
Collapse
Affiliation(s)
- M Duszenko
- Physiologisch-chemisches Institut der Universität Tübingen, Germany.
| | | | | | | | | |
Collapse
|
7
|
Reid-Taylor KL, Chu JWK, Sharom FJ. Reconstitution of the glycosylphosphatidylinositol-anchored protein Thy-1: interaction with membrane phospholipids and galactosylceramide. Biochem Cell Biol 1999. [DOI: 10.1139/o99-031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored membrane proteins are proposed to interact preferentially with glycosphingolipids and cholesterol to form microdomains, which may play an important role in apical targeting and signal transduction. The objective of the present study was to investigate the interaction of the GPI-anchored protein Thy-1 with phospholipids and a glycosphingolipid. Purified Thy-1 was reconstituted into lipid bilayer vesicles of dimyristoyl-phosphatidylcholine (DMPC) alone or in combination with galactosylceramide (GC). The ability of Thy-1 to perturb the gel to a liquid-crystalline phase transition of DMPC was examined by differential scanning calorimetry. As the mole fraction of Thy-1 increased, the phase transition enthalpy, deltaH, declined. Analysis indicated that each molecule of Thy-1 perturbed over 50 phospholipids, suggesting that, in addition to the anchor insertion into the bilayer, the protein itself may interact with the membrane surface. Inclusion of 5% w/w GC in the bilayer resulted in a striking change in the interaction of Thy-1 with phospholipids. At low Thy-1 content, there was a reduction in the phase transition temperature and an increase in phospholipid cooperativity, suggesting the formation of Thy-1/GC-enriched domains. deltaH initially decreased with increasing Thy-1 content of the bilayer; however, at higher Thy-1 mole ratios, deltaH rose again. These results are interpreted in terms of a model whereby, at low protein:lipid mole ratios, Thy-1 preferentially sequesters GC to form enriched microdomains. At high protein:lipid mole ratios, Thy-1 may alter its conformation in response to steric crowding within these domains such that its interaction with the bilayer surface is reduced.Key words: glycosylphosphatidylinositol anchor, Thy-1 antigen, reconstitution, lipid bilayer, glycosphingolipid, differential scanning calorimetry, dynamic light scattering.
Collapse
|
8
|
Vidugiriene J, Sharma DK, Smith TK, Baumann NA, Menon AK. Segregation of glycosylphosphatidylinositol biosynthetic reactions in a subcompartment of the endoplasmic reticulum. J Biol Chem 1999; 274:15203-12. [PMID: 10329729 DOI: 10.1074/jbc.274.21.15203] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are synthesized in the endoplasmic reticulum (ER) via the sequential addition of monosaccharides, fatty acid, and phosphoethanolamine(s) to phosphatidylinositol (PI). While attempting to establish a mammalian cell-free system for GPI biosynthesis, we found that the assembly of mannosylated GPI species was impaired when purified ER preparations were substituted for unfractionated cell lysates as the enzyme source. To explore this problem we analyzed the distribution of the various GPI biosynthetic reactions in subcellular fractions prepared from homogenates of mammalian cells. The results indicate the following: (i) the initial reaction of GPI assembly, i.e. the transfer of GlcNAc to PI to form GlcNAc-PI, is uniformly distributed in the ER; (ii) the second step of the pathway, i.e. de-N-acetylation of GlcNAc-PI to yield GlcN-PI, is largely confined to a subcompartment of the ER that appears to be associated with mitochondria; (iii) the mitochondria-associated ER subcompartment is enriched in enzymatic activities involved in the conversion of GlcN-PI to H5 (a singly mannosylated GPI structure containing one phosphoethanolamine side chain; and (iv) the mitochondria-associated ER subcompartment, unlike bulk ER, is capable of the de novo synthesis of H5 from UDP-GlcNAc and PI. The confinement of these GPI biosynthetic reactions to a domain of the ER provides another example of the compositional and functional heterogeneity of the ER. The implications of these findings for GPI assembly are discussed.
Collapse
Affiliation(s)
- J Vidugiriene
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1569, USA
| | | | | | | | | |
Collapse
|
9
|
Tiede A, Bastisch I, Schubert J, Orlean P, Schmidt RE. Biosynthesis of glycosylphosphatidylinositols in mammals and unicellular microbes. Biol Chem 1999; 380:503-23. [PMID: 10384957 DOI: 10.1515/bc.1999.066] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Membrane anchoring of cell surface proteins via glycosylphosphatidylinositol (GPI) occurs in all eukaryotic organisms. In addition, GPI-related glycophospholipids are important constituents of the glycan coat of certain protozoa. Defects in GPI biosynthesis can retard, if not abolish growth of these organisms. In humans, a defect in GPI biosynthesis can cause paroxysmal nocturnal hemoglobinuria (PNH), a severe acquired bone marrow disorder. Here, we review advances in the characterization of GPI biosynthesis in parasitic protozoa, yeast and mammalian cells. The GPI core structure as well as the major steps in its biosynthesis are conserved throughout evolution. However, there are significant biosynthetic differences between mammals and microbes. First indications are that these differences could be exploited as targets in the design of novel pharmacotherapeutics that selectively inhibit GPI biosynthesis in unicellular microbes.
Collapse
Affiliation(s)
- A Tiede
- Department of Clinical Immunology, Hannover Medical School, Germany
| | | | | | | | | |
Collapse
|
10
|
Strahl-Bolsinger S, Scheinost A. Transmembrane topology of pmt1p, a member of an evolutionarily conserved family of protein O-mannosyltransferases. J Biol Chem 1999; 274:9068-75. [PMID: 10085156 DOI: 10.1074/jbc.274.13.9068] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The identification of the evolutionarily conserved family of dolichyl-phosphate-D-mannose:protein O-mannosyltransferases (Pmts) revealed that protein O-mannosylation plays an essential role in a number of physiologically important processes. Strikingly, all members of the Pmt protein family share almost identical hydropathy profiles; a central hydrophilic domain is flanked by amino- and carboxyl-terminal sequences containing several putative transmembrane helices. This pattern is of particular interest because it diverges from structural models of all glycosyltransferases characterized so far. Here, we examine the transmembrane topology of Pmt1p, an integral membrane protein of the endoplasmic reticulum, from Saccharomyces cerevisiae. Structural predictions were directly tested by site-directed mutagenesis of endogenous N-glycosylation sites, by fusing a topology-sensitive monitor protein domain to carboxyl-terminal truncated versions of the Pmt1 protein and, in addition, by N-glycosylation scanning. Based on our results we propose a seven-transmembrane helical model for the yeast Pmt1p mannosyltransferase. The Pmt1p amino terminus faces the cytoplasm, whereas the carboxyl terminus faces the lumen of the endoplasmic reticulum. A large hydrophilic segment that is oriented toward the lumen of the endoplasmic reticulum is flanked by five amino-terminal and two carboxyl-terminal membrane spanning domains. We could demonstrate that this central loop is essential for the function of Pmt1p.
Collapse
Affiliation(s)
- S Strahl-Bolsinger
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany.
| | | |
Collapse
|
11
|
Affiliation(s)
- A K Menon
- Dept of Biochemistry, University of Wisconsin-Madison 53706, USA.
| |
Collapse
|