1
|
Wu Z, Huang Y, Yuan W, Wu X, Shi H, Lu M, Xu A. Expression, tumor immune infiltration, and prognostic impact of HMGs in gastric cancer. Front Oncol 2022; 12:1056917. [PMID: 36568211 PMCID: PMC9780705 DOI: 10.3389/fonc.2022.1056917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Background In the past decade, considerable research efforts on gastric cancer (GC) have been expended, however, little advancement has been made owing to the lack of effective biomarkers and treatment options. Herein, we aimed to examine the levels of expression, mutations, and clinical relevance of HMGs in GC to provide sufficient scientific evidence for clinical decision-making and risk management. Methods GC samples were obtained from The Cancer Genome Atlas (TCGA). University of California Santa Cruz (UCSC) XENA, Human Protein Atlas (HPA), Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier Plotter, cBioPortal, GeneMANIA, STRING, LinkedOmics, and DAVID databases were employed. The "ggplot2" package in the R software (×64 3.6.3) was used to thoroughly analyze the effects of HMGs. qRT-PCR was performed to assess HMG levels in GC cell lines. Results A total of 375 GC tissues and 32 paraneoplastic tissues were analyzed. The levels of HMGA1, HMGA2, HMGB1, HMGB2, HMGB3, HMGN1, HMGN2, and HMGN4 expression were increased in GC tissues relative to normal gastric tissues. HMGA1, HMGA2, HMGB1, HMGB2, and HMGB3 were highly expressed in GC cell lines. The OS was significantly different in the group showing low expressions of HMGA1, HMGA2, HMGB1, HMGB2, HMGB3, HMGN2, HMGN3, and HMGN5. There was a significant difference in RFS between the groups with low HMGA2, HMGB3, and high HMGN2 expression. The levels of HMGA2, HMGB3, and HMGN1 had a higher accuracy for prediction to distinguish GC from normal tissues (AUC value > 0.9). HMGs were tightly associated with immune infiltration and tumor immune escape and antitumor immunity most likely participates in HMG-mediated oncogenesis in GC. GO and KEGG enrichment analyses showed that HMGs played a vital role in the cell cycle pathway. Conclusions Our results strongly suggest a vital role of HMGs in GC. HMGA2 and HMGB3 could be potential markers for prognostic prediction and treatment targets for GC by interrupting the cell cycle pathway. Our findings might provide renewed perspectives for the selection of prognostic biomarkers among HMGs in GC and may contribute to the determination of the optimal strategy for the treatment of these patients.
Collapse
Affiliation(s)
- Zhiheng Wu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Yang Huang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Weiwei Yuan
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Xiong Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China, State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Hui Shi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ming Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Aman Xu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| |
Collapse
|
2
|
Biological Functions of HMGN Chromosomal Proteins. Int J Mol Sci 2020; 21:ijms21020449. [PMID: 31936777 PMCID: PMC7013550 DOI: 10.3390/ijms21020449] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Chromatin plays a key role in regulating gene expression programs necessary for the orderly progress of development and for preventing changes in cell identity that can lead to disease. The high mobility group N (HMGN) is a family of nucleosome binding proteins that preferentially binds to chromatin regulatory sites including enhancers and promoters. HMGN proteins are ubiquitously expressed in all vertebrate cells potentially affecting chromatin function and epigenetic regulation in multiple cell types. Here, we review studies aimed at elucidating the biological function of HMGN proteins, focusing on their possible role in vertebrate development and the etiology of disease. The data indicate that changes in HMGN levels lead to cell type-specific phenotypes, suggesting that HMGN optimize epigenetic processes necessary for maintaining cell identity and for proper execution of specific cellular functions. This manuscript contains tables that can be used as a comprehensive resource for all the English written manuscripts describing research aimed at elucidating the biological function of the HMGN protein family.
Collapse
|
3
|
Reeves R. High mobility group (HMG) proteins: Modulators of chromatin structure and DNA repair in mammalian cells. DNA Repair (Amst) 2015; 36:122-136. [PMID: 26411874 DOI: 10.1016/j.dnarep.2015.09.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been almost a decade since the last review appeared comparing and contrasting the influences that the different families of High Mobility Group proteins (HMGA, HMGB and HMGN) have on the various DNA repair pathways in mammalian cells. During that time considerable progress has been made in our understanding of how these non-histone proteins modulate the efficiency of DNA repair by all of the major cellular pathways: nucleotide excision repair, base excision repair, double-stand break repair and mismatch repair. Although there are often similar and over-lapping biological activities shared by all HMG proteins, members of each of the different families appear to have a somewhat 'individualistic' impact on various DNA repair pathways. This review will focus on what is currently known about the roles that different HMG proteins play in DNA repair processes and discuss possible future research areas in this rapidly evolving field.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-4660, USA.
| |
Collapse
|
4
|
Gan Y, Tan J, Yang J, Zhou Y, Dai Y, He L, Yao K, Tang Y. Knockdown of HMGN5 suppresses the viability and invasion of human urothelial bladder cancer 5637 cells in vitro and in vivo. Med Oncol 2015; 32:136. [PMID: 25796505 DOI: 10.1007/s12032-015-0594-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 01/02/2023]
Abstract
The high-mobility group nucleosome-binding domain 5 (HMGN5) is a new and typical member of HMGN protein family. Numerous studies confirmed that HMGN5 was highly expressed in several kinds of malignant tumors, but its role in cancer progression of urothelial bladder cancer (UBC) has not been fully clarified. This study aimed to further investigate the oncogenic role of HMGN5 in UBC 5637 cells employing in vitro and in vivo models and to explore the mechanism [corrected].RNA interference was used to down-regulate HMGN5 expression in 5637 cells by a shRNA expression lentiviral vector. Then cell viability, apoptosis and cell cycle distribution, invasion were detected by MTT assay, flow cytometry and transwell assay, respectively. Tumor growth was also evaluated in nude mice. As a result, successful transfection was confirmed using fluorescence microscopy and HMGN5 was efficiently inhibited. HMGN5 knockdown suppressed invasion, and induced G1/S cell cycle arrestbut not apoptosis and thus contributed to decreased cell viability in UBC 5637 cells [corrected]. Consistent with the cell cycle arrest, the protein expression levels of cyclin D1 were decreased. In vivo study further showed that HMGN5 knockdown affected the tumorigenesis of 5637 cells in nude mice. Western blot also demonstrated that the expression of E-cadherin was enhanced, while the expression of VEGF-C was decreased in 5637 cells depleted of HMGN5 [corrected].In conclusion, we provide both in vivo and in vitro evidence that HMGN5 contribute to the growth and invasion of UBC 5637 cell line and HMGN5 could be exploited as a target for therapy in UBC.
Collapse
Affiliation(s)
- Yu Gan
- Department of Urology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Masaoka A, Gassman NR, Kedar PS, Prasad R, Hou EW, Horton JK, Bustin M, Wilson SH. HMGN1 protein regulates poly(ADP-ribose) polymerase-1 (PARP-1) self-PARylation in mouse fibroblasts. J Biol Chem 2012; 287:27648-58. [PMID: 22736760 DOI: 10.1074/jbc.m112.370759] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In mammalian cells, the nucleosome-binding protein HMGN1 (high mobility group N1) affects the structure and function of chromatin and plays a role in repair of damaged DNA. HMGN1 affects the interaction of DNA repair factors with chromatin and their access to damaged DNA; however, not all of the repair factors affected have been identified. Here, we report that HMGN1 affects the self-poly(ADP-ribosyl)ation (i.e., PARylation) of poly(ADP-ribose) polymerase-1 (PARP-1), a multifunctional and abundant nuclear enzyme known to recognize DNA lesions and promote chromatin remodeling, DNA repair, and other nucleic acid transactions. The catalytic activity of PARP-1 is activated by DNA with a strand break, and this results in self-PARylation and PARylation of other chromatin proteins. Using cells obtained from Hmgn1(-/-) and Hmgn1(+/+) littermate mice, we find that in untreated cells, loss of HMGN1 protein reduces PARP-1 self-PARylation. A similar result was obtained after MMS treatment of these cells. In imaging experiments after low energy laser-induced DNA damage, less PARylation at lesion sites was observed in Hmgn1(-/-) than in Hmgn1(+/+) cells. The HMGN1 regulation of PARP-1 activity could be mediated by direct protein-protein interaction as HMGN1 and PARP-1 were found to interact in binding assays. Purified HMGN1 was able to stimulate self-PARylation of purified PARP-1, and in experiments with cell extracts, self-PARylation was greater in Hmgn1(+/+) than in Hmgn1(-/-) extract. The results suggest a regulatory role for HMGN1 in PARP-1 activation.
Collapse
Affiliation(s)
- Aya Masaoka
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Transcription regulation by the noncoding RNA SRG1 requires Spt2-dependent chromatin deposition in the wake of RNA polymerase II. Mol Cell Biol 2011; 31:1288-300. [PMID: 21220514 DOI: 10.1128/mcb.01083-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spt2 is a chromatin component with roles in transcription and posttranscriptional regulation. Recently, we found that Spt2 travels with RNA polymerase II (RNAP II), is involved in elongation, and plays important roles in chromatin modulations associated with this process. In this work, we dissect the function of Spt2 in the repression of SER3. This gene is repressed by a transcription interference mechanism involving the transcription of an adjacent intergenic region, SRG1, that leads to the production of a noncoding RNA (ncRNA). We find that Spt2 and Spt6 are required for the repression of SER3 by SRG1 transcription. Intriguingly, we demonstrate that these effects are not mediated through modulations of the SRG1 transcription rate. Instead, we show that the SRG1 region overlapping the SER3 promoter is occluded by randomly positioned nucleosomes that are deposited behind RNAP II transcribing SRG1 and that their deposition is dependent on the presence of Spt2. Our data indicate that Spt2 is required for the major chromatin deposition pathway that uses old histones to refold nucleosomes in the wake of RNAP II at the SRG1-SER3 locus. Altogether, these observations suggest a new mechanism of repression by ncRNA transcription involving a repressive nucleosomal structure produced by an Spt2-dependent pathway following RNAP II passage.
Collapse
|
7
|
Zhu N, Hansen U. Transcriptional regulation by HMGN proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:74-9. [PMID: 20123070 DOI: 10.1016/j.bbagrm.2009.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/25/2009] [Accepted: 11/03/2009] [Indexed: 12/20/2022]
Abstract
High mobility group nucleosomal proteins (HMGNs) are small non-histone proteins associated with chromatin. HMGNs have the unique ability to bind to nucleosomes with higher affinity than to naked DNA [1]. They have been studied extensively for their ability to modulate transcription. Although initially viewed as general transcriptional activators on chromatin templates, it is now appreciated that they are instead highly specific modulators of gene expression. We review the mechanisms for targeting HMGNs to specific genes and for how they subsequently regulate transcription.
Collapse
Affiliation(s)
- Nan Zhu
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | |
Collapse
|
8
|
Pereira MM, Machado MA, Costa FQ, Serapiao RV, Viana JHM, Camargo LSA. Effect of oxygen tension and serum during IVM on developmental competence of bovine oocytes. Reprod Fertil Dev 2010; 22:1074-82. [DOI: 10.1071/rd10007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 02/10/2010] [Indexed: 11/23/2022] Open
Abstract
With an aim to improve the in vitro production of bovine embryos, the present study investigated the effect of serum and oxygen tension during IVM on oocyte developmental competence. Four experimental groups were evaluated: G1, 10% oestrus cow serum (OCS) with 20% O2; G2, 0.1% polyvinyl alcohol (PVA) with 20% O2; G3, 10% OCS with 5% O2; and G4, 0.1% PVA with 5% O2. The proportion of MII oocytes, blastocyst rates and total cell number were not affected (P > 0.05) when the OCS was replaced with PVA under 5% O2, whereas a higher (P < 0.05) blastocyst rate and total cell number were found with OCS compared with PVA under 20% O2. The apoptosis index was lower in blastocysts from oocytes matured with PVA under 5% O2 (G4) compared with other groups (G1, G2 and G3), but no differences (P > 0.05) were found in maturation and blastocyst rates. Significant differences were found in the amount of specific transcripts in oocytes matured under different conditions. In conclusion maturation with PVA and 5% O2 provides an efficient in vitro culture condition for the maturation of bovine oocytes.
Collapse
|
9
|
Identification of cellular factors binding to acetylated HIV-1 integrase. Amino Acids 2009; 41:1137-45. [PMID: 20016921 DOI: 10.1007/s00726-009-0444-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
Abstract
The viral protein integrase (IN) catalyzes the integration of the HIV-1 cDNA into the host cellular genome. We have recently demonstrated that IN is acetylated by a cellular histone acetyltransferase, p300, which modifies three lysines located in the C-terminus of the viral factor (Cereseto et al. in EMBO J 24:3070-3081, 2005). This modification enhances IN catalytic activity, as demonstrated by in vitro assays. Consistently, mutations introduced in the targeted lysines greatly decrease the efficiency of HIV-1 integration. Acetylation was proven to regulate protein functions by modulating protein-protein interactions. HIV-1 to efficiently complete its replication steps, including the integration reaction, requires interacting with numerous cellular factors. Therefore, we sought to investigate whether acetylation might modulate the interaction between IN and the cellular factors. To this aim we performed a yeast two-hybrid screening that differs from the screenings so far performed (Rain et al. in Methods 47:291-297, 2009; Studamire and Goff in Retrovirology 5:48, 2008) for using as bait IN constitutively acetylated. From this analysis we have identified thirteen cellular factors involved in transcription, chromatin remodeling, nuclear transport, RNA binding, protein synthesis regulation and microtubule organization. To validate these interactions, binding assays were performed showing that acetylation increases the affinity of IN with specific factors. Nevertheless, few two-hybrid hits bind with the same affinity the acetylated and the unmodified IN. These results further underlie the relevance of IN post-translational modification by acetylation in HIV-1 replication cycle.
Collapse
|
10
|
Reeves R. Nuclear functions of the HMG proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:3-14. [PMID: 19748605 DOI: 10.1016/j.bbagrm.2009.09.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/04/2009] [Indexed: 12/12/2022]
Abstract
Although the three families of mammalian HMG proteins (HMGA, HMGB and HMGN) participate in many of the same nuclear processes, each family plays its own unique role in modulating chromatin structure and regulating genomic function. This review focuses on the similarities and differences in the mechanisms by which the different HMG families impact chromatin structure and influence cellular phenotype. The biological implications of having three architectural transcription factor families with complementary, but partially overlapping, nuclear functions are discussed.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, Washington State University, Biotechnology/Life Sciences Bldg., Rm. 143, Pullman, WA 99164-7520, USA.
| |
Collapse
|
11
|
Rattner BP, Yusufzai T, Kadonaga JT. HMGN proteins act in opposition to ATP-dependent chromatin remodeling factors to restrict nucleosome mobility. Mol Cell 2009; 34:620-6. [PMID: 19524541 DOI: 10.1016/j.molcel.2009.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/03/2009] [Accepted: 04/10/2009] [Indexed: 12/20/2022]
Abstract
The high-mobility group N (HMGN) proteins are abundant nonhistone chromosomal proteins that bind specifically to nucleosomes at two high-affinity sites. Here we report that purified recombinant human HMGN1 (HMG14) and HMGN2 (HMG17) potently repress ATP-dependent chromatin remodeling by four different molecular motor proteins. In contrast, mutant HMGN proteins with double Ser-to-Glu mutations in their nucleosome-binding domains are unable to inhibit chromatin remodeling. The HMGN-mediated repression of chromatin remodeling is reversible and dynamic. With the ACF chromatin remodeling factor, HMGN2 does not directly inhibit the ATPase activity but rather appears to reduce the affinity of the factor to chromatin. These findings suggest that HMGN proteins serve as a counterbalance to the action of the many ATP-dependent chromatin remodeling activities in the nucleus.
Collapse
Affiliation(s)
- Barbara P Rattner
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | | | | |
Collapse
|
12
|
Singh U, Bongcam-Rudloff E, Westermark B. A DNA sequence directed mutual transcription regulation of HSF1 and NFIX involves novel heat sensitive protein interactions. PLoS One 2009; 4:e5050. [PMID: 19337383 PMCID: PMC2660424 DOI: 10.1371/journal.pone.0005050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 03/05/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Though the Nuclear factor 1 family member NFIX has been strongly implicated in PDGFB-induced glioblastoma, its molecular mechanisms of action remain unknown. HSF1, a heat shock-related transcription factor is also a powerful modifier of carcinogenesis by several factors, including PDGFB. How HSF1 transcription is controlled has remained largely elusive. METHODOLOGY/PRINCIPAL FINDINGS By combining microarray expression profiling and a yeast-two-hybrid screen, we identified that NFIX and its interactions with CGGBP1 and HMGN1 regulate expression of HSF1. We found that CGGBP1 organizes a bifunctional transcriptional complex at small CGG repeats in the HSF1 promoter. Under chronic heat shock, NFIX uses CGGBP1 and HMGN1 to get recruited to this promoter and in turn affects their binding to DNA. Results show that the interactions of NFIX with CGGBP1 and HMGN1 in the soluble fraction are heat shock sensitive due to preferential localization of CGGBP1 to heterochromatin after heat shock. HSF1 in turn was found to bind to the NFIX promoter and repress its expression in a heat shock sensitive manner. CONCLUSIONS/SIGNIFICANCE NFIX and HSF1 exert a mutual transcriptional repressive effect on each other which requires CGG repeat in HSF1 promoter and HSF1 binding site in NFIX promoter. We unravel a unique mechanism of heat shock sensitive DNA sequence-directed reciprocal transcriptional regulation between NFIX and HSF1. Our findings provide new insights into mechanisms of transcription regulation under stress.
Collapse
Affiliation(s)
- Umashankar Singh
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
- * E-mail: (US); (BW)
| | | | - Bengt Westermark
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
- * E-mail: (US); (BW)
| |
Collapse
|
13
|
Sikdar N, Banerjee S, Zhang H, Smith S, Myung K. Spt2p defines a new transcription-dependent gross chromosomal rearrangement pathway. PLoS Genet 2008; 4:e1000290. [PMID: 19057669 PMCID: PMC2585797 DOI: 10.1371/journal.pgen.1000290] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 11/03/2008] [Indexed: 01/18/2023] Open
Abstract
Large numbers of gross chromosomal rearrangements (GCRs) are frequently observed in many cancers. High mobility group 1 (HMG1) protein is a non-histone DNA-binding protein and is highly expressed in different types of tumors. The high expression of HMG1 could alter DNA structure resulting in GCRs. Spt2p is a non-histone DNA binding protein in Saccharomyces cerevisiae and shares homology with mammalian HMG1 protein. We found that Spt2p overexpression enhances GCRs dependent on proteins for transcription elongation and polyadenylation. Excess Spt2p increases the number of cells in S phase and the amount of single-stranded DNA (ssDNA) that might be susceptible to cause DNA damage and GCR. Consistently, RNase H expression, which reduces levels of ssDNA, decreased GCRs in cells expressing high level of Spt2p. Lastly, high transcription in the chromosome V, the location at which GCR is monitored, also enhanced GCR formation. We propose a new pathway for GCR where DNA intermediates formed during transcription can lead to genomic instability. Transmitting genetic information without creating deleterious genetic alternations is one of the cell's most important tasks. When cells cannot repair DNA damage properly, it leads to genomic instability and results in genetic disorders, including cancer. Many studies, including ours, have started to uncover pathways suppressing one type of genomic instability, gross chromosomal rearrangement (GCR). However, the pathogenic mechanism to promote GCR that could mimic the hyper-activation of oncogenes during tumorigenesis is not clearly understood. The high expression of HMG1 has been documented many times as a putative oncogene. Therefore, we tested whether high expression of its yeast homologue, Spt2p, could induce pathogenic effect including GCR formation. Excess Spt2p expression indeed induced GCR formation dependent on its role in transcription elongation and polyadenylation. Further studies to find mechanisms resided in GCR formation by Spt2p revealed that excess Spt2p increased single-stranded DNA to produce GCR. Our studies provide a mechanistic bridge between transcription and genomic instability.
Collapse
Affiliation(s)
- Nilabja Sikdar
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Soma Banerjee
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Han Zhang
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephanie Smith
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kyungjae Myung
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Zougman A, Ziółkowski P, Mann M, Wiśniewski JR. Evidence for insertional RNA editing in humans. Curr Biol 2008; 18:1760-5. [PMID: 18993075 DOI: 10.1016/j.cub.2008.09.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/28/2008] [Accepted: 09/19/2008] [Indexed: 12/29/2022]
Abstract
Large-scale analysis directly at the protein level holds the promise of uncovering features not apparent or present at the gene level [1-3]. Although mass spectrometry (MS)-based proteomics can now identify and quantify thousands of cellular proteins in large-scale proteomics experiments, much of the peptide information contained in these experiments remains unassigned [4]. Here, we use such information to discover a previously unreported mechanism creating altered protein forms. Linker histones H1 and high-mobility group (HMG) proteins are abundant nuclear proteins that regulate gene expression through modulation of chromatin structure [5-8]. In the high-resolution MS analysis of histone H1 and HMG protein fractions isolated from human cells, we discovered peptides that mapped upstream of the known translation start sites of these genes. No alternative upstream start site exists in the genome, but analysis of Expressed Sequence Tag (EST) databases revealed that these N-terminally extended (ET) proteins are due to in-frame translation of the 5' untranslated region (5'UTR) sequences of the transcripts. The new translation start sites are created by a single uridine insertion between AG, reflecting a previously unreported RNA-editing mechanism. To our knowledge, this is the first report of RNA-insertion editing in humans and may be an example of the type of discoveries possible with modern proteomics methods.
Collapse
Affiliation(s)
- Alexandre Zougman
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
15
|
Potier MC, Rivals I, Mercier G, Ettwiller L, Moldrich RX, Laffaire J, Personnaz L, Rossier J, Dauphinot L. Transcriptional disruptions in Down syndrome: a case study in the Ts1Cje mouse cerebellum during post-natal development. J Neurochem 2006; 97 Suppl 1:104-9. [PMID: 16635258 DOI: 10.1111/j.1471-4159.2005.03624.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To understand the aetiology and the phenotypic severity of Down syndrome, we searched for transcriptional signatures in a substructure of the brain (cerebellum) during post-natal development in a segmental trisomy 16 model, the Ts1Cje mouse. The goal of this study was to investigate the effects of trisomy on changes in gene expression across development time. The primary gene-dosage effect on triplicated genes (approximately 1.5) was observed at birth [post-natal day 0 (P0)], at P15 and P30. About 5% of the non-triplicated genes were significantly differentially expressed between trisomic and control cerebellum, while 25% of the transcriptome was modified during post-natal development of the cerebellum. Indeed, only 165, 171 and 115 genes were dysregulated in trisomic cerebellum at P0, P15 and P30, respectively. Surprisingly, there were only three genes dysregulated in development and in trisomic animals in a similar or opposite direction. These three genes (Dscr1, Son and Hmg14) were, quite unexpectedly, triplicated in the Ts1Cje model and should be candidate genes for understanding the aetiology of the phenotype observed in the cerebellum.
Collapse
Affiliation(s)
- M-C Potier
- Unité Mixte de Recherche, 7637 Centre National de la Recherche Scientifique, Neurobiology, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nourani A, Robert F, Winston F. Evidence that Spt2/Sin1, an HMG-like factor, plays roles in transcription elongation, chromatin structure, and genome stability in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:1496-509. [PMID: 16449659 PMCID: PMC1367203 DOI: 10.1128/mcb.26.4.1496-1509.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spt2/Sin1 is a DNA binding protein with HMG-like domains that has been suggested to play a role in chromatin-mediated transcription in Saccharomyces cerevisiae. Previous studies have suggested models in which Spt2 plays an inhibitory role in the initiation of transcription of certain genes. In this work, we have taken several approaches to study Spt2 in greater detail. Our results have identified previously unknown genetic interactions between spt2Delta and mutations in genes encoding transcription elongation factors, including members of the PAF and HIR/HPC complexes. In addition, genome-wide and gene-specific chromatin immunoprecipitation analyses suggest that Spt2 is primarily associated with coding regions in a transcription-dependent fashion. Furthermore, our results show that Spt2, like other elongation factors, is required for the repression of transcription from a cryptic promoter within a coding region and that Spt2 is also required for repression of recombination within transcribed regions. Finally, we provide evidence that Spt2 plays a role in regulating the levels of histone H3 over transcribed regions. Taken together, our results suggest a direct link for Spt2 with transcription elongation, chromatin dynamics, and genome stability.
Collapse
Affiliation(s)
- Amine Nourani
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | |
Collapse
|