• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4672507)   Today's Articles (139)
For: Borg SJ, Bondin MI, Best SP, Razavet M, Liu X, Pickett CJ. Electrocatalytic proton reduction by dithiolate-bridged diiron carbonyl complexes: a connection to the H-cluster? Biochem Soc Trans 2005;33:3-6. [PMID: 15667249 DOI: 10.1042/bst0330003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Number Cited by Other Article(s)
1
Almazahreh LR, Arrigoni F, Abul-Futouh H, El-khateeb M, Görls H, Elleouet C, Schollhammer P, Bertini L, De Gioia L, Rudolph M, Zampella G, Weigand W. Proton Shuttle Mediated by (SCH2)2P═O Moiety in [FeFe]-Hydrogenase Mimics: Electrochemical and DFT Studies. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05563] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
2
Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP. [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 2021;50:1668-1784. [DOI: 10.1039/d0cs01089h] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
3
Puthenkalathil RC, Etinski M, Ensing B. Unraveling the mechanism of biomimetic hydrogen fuel production – a first principles molecular dynamics study. Phys Chem Chem Phys 2020;22:10447-10454. [DOI: 10.1039/c9cp06770a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
4
Electronic Communication between Dithiolato-Bridged Diiron Carbonyl and S-Bridged Redox-Active Centres. INORGANICS 2019. [DOI: 10.3390/inorganics7030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
5
Abul-Futouh H, Skabeev A, Botteri D, Zagranyarski Y, Görls H, Weigand W, Peneva K. Toward a Tunable Synthetic [FeFe]-Hydrogenase H-Cluster Mimic Mediated by Perylene Monoimide Model Complexes: Insight into Molecular Structures and Electrochemical Characteristics. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00450] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
6
Ghosh S, Rahaman A, Holt KB, Nordlander E, Richmond MG, Kabir SE, Hogarth G. Hydrogenase biomimetics with redox-active ligands: Electrocatalytic proton reduction by [Fe2(CO)4(κ2-diamine)(μ-edt)] (diamine = 2,2′-bipy, 1,10-phen). Polyhedron 2016. [DOI: 10.1016/j.poly.2016.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
7
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016;116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
8
Khrizanforova VV, Knyazeva IR, Matveeva Sokolova VI, Nizameev IR, Gryaznova TV, Kadirov MK, Burilov AR, Sinyashin OG, Budnikova YH. Nickel Complexes Based on Thiophosphorylated Calix[4]Resorcinols as Effective Catalysts for Hydrogen Evolution. Electrocatalysis (N Y) 2015. [DOI: 10.1007/s12678-015-0251-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
9
Newman GL, Rahman JMA, Gluyas JBG, Yufit DS, Howard JAK, Low PJ. Alkynyl-Phosphine Substituted Fe2S2 Clusters: Synthesis, Structure and Spectroelectrochemical Characterization of a Cluster with a Class III Mixed-Valence [FeFe]3+ Core. J CLUST SCI 2014. [DOI: 10.1007/s10876-014-0790-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
10
Wen HM, Wang JY, Hu MQ, Li B, Chen ZN, Chen CN. Photoswitchable electrochemical behaviour of a [FeFe] hydrogenase model with a dithienylethene derivative. Dalton Trans 2012;41:11813-9. [DOI: 10.1039/c2dt31507f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
11
Matthews SL, Heinekey DM. An oxidized active site model for the FeFe hydrogenase: reduction with hydrogen gas. Inorg Chem 2011;50:7925-7. [PMID: 21793493 DOI: 10.1021/ic2009573] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
12
Surawatanawong P, Tye JW, Darensbourg MY, Hall MB. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron–iron hydrogenase: A density functional theory study of proton dissociation constants and electrode reduction potentials. Dalton Trans 2010;39:3093-104. [DOI: 10.1039/b925262b] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
13
Greco C, Fantucci P, De Gioia L, Suarez-Bertoa R, Bruschi M, Talarmin J, Schollhammer P. Electrocatalytic dihydrogen evolution mechanism of [Fe2(CO)4(κ2-Ph2PCH2CH2PPh2)(μ-S(CH2)3S)] and related models of the [FeFe]-hydrogenases active site: a DFT investigation. Dalton Trans 2010;39:7320-9. [DOI: 10.1039/b926040d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
14
Heinekey DM. Hydrogenase enzymes: Recent structural studies and active site models. J Organomet Chem 2009. [DOI: 10.1016/j.jorganchem.2009.03.047] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
15
Roy LE, Batista ER, Hay PJ. Theoretical studies on the redox potentials of Fe dinuclear complexes as models for hydrogenase. Inorg Chem 2008;47:9228-37. [PMID: 18811143 DOI: 10.1021/ic800541w] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
16
On the electrochemistry of diiron dithiolate complexes related to the active site of the [FeFe]H2ase. CR CHIM 2008. [DOI: 10.1016/j.crci.2008.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
17
Borg SJ, Ibrahim SK, Pickett CJ, Best SP. Electrocatalysis of hydrogen evolution by synthetic diiron units using weak acids as the proton source: Pathways of doubtful relevance to enzymic catalysis by the diiron subsite of [FeFe] hydrogenase. CR CHIM 2008. [DOI: 10.1016/j.crci.2008.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
18
Greco C, Zampella G, Bertini L, Bruschi M, Fantucci P, De Gioia L. Insights into the Mechanism of Electrocatalytic Hydrogen Evolution Mediated by Fe2(S2C3H6)(CO)6:  The Simplest Functional Model of the Fe-Hydrogenase Active Site. Inorg Chem 2007;46:108-16. [PMID: 17198418 DOI: 10.1021/ic061168+] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
19
Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 2006;103:15729-35. [PMID: 17043226 PMCID: PMC1635072 DOI: 10.1073/pnas.0603395103] [Citation(s) in RCA: 4290] [Impact Index Per Article: 225.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA