1
|
Almazahreh LR, Arrigoni F, Abul-Futouh H, El-khateeb M, Görls H, Elleouet C, Schollhammer P, Bertini L, De Gioia L, Rudolph M, Zampella G, Weigand W. Proton Shuttle Mediated by (SCH 2) 2P═O Moiety in [FeFe]-Hydrogenase Mimics: Electrochemical and DFT Studies. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05563] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laith R. Almazahreh
- ERCOSPLAN Ingenieurbüro Anlagentechnik GmbH Arnstädter Straße 28, 99096 Erfurt, Germany
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Hassan Abul-Futouh
- Department of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman 11733 Jordan
| | - Mohammad El-khateeb
- Chemistry Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Catherine Elleouet
- UMR CNRS 6521, Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques, Cs 93837, 29238 CEDEX 3 Brest, France
| | - Philippe Schollhammer
- UMR CNRS 6521, Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques, Cs 93837, 29238 CEDEX 3 Brest, France
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Manfred Rudolph
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| |
Collapse
|
2
|
Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP. [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 2021; 50:1668-1784. [DOI: 10.1039/d0cs01089h] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
[FeFe]-hydrogenases recieved increasing interest in the last decades. This review summarises important findings regarding their enzymatic reactivity as well as inorganic models applied as electro- and photochemical catalysts.
Collapse
Affiliation(s)
| | | | - Shanika Yadav
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Daniel Siegmund
- Department of Electrosynthesis
- Fraunhofer UMSICHT
- 46047 Oberhausen
- Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
- Department of Electrosynthesis
| |
Collapse
|
3
|
Puthenkalathil RC, Etinski M, Ensing B. Unraveling the mechanism of biomimetic hydrogen fuel production – a first principles molecular dynamics study. Phys Chem Chem Phys 2020; 22:10447-10454. [DOI: 10.1039/c9cp06770a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Fe2(bdt)(CO)6 [bdt = benzenedithiolato] complex, a synthetic mimic of the [FeFe] hydrogenase enzyme can electrochemically convert protons into molecular hydrogen. The free energy landscape reveals a different mechanism for the biomimetic cycle.
Collapse
Affiliation(s)
- Rakesh C. Puthenkalathil
- Van't Hoff Institute for Molecular Sciences, and Amsterdam Center for Multiscale Modeling
- University of Amsterdam
- 1098 XH Amsterdam
- The Netherlands
| | - Mihajlo Etinski
- Faculty of Physical Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Bernd Ensing
- Van't Hoff Institute for Molecular Sciences, and Amsterdam Center for Multiscale Modeling
- University of Amsterdam
- 1098 XH Amsterdam
- The Netherlands
| |
Collapse
|
4
|
Electronic Communication between Dithiolato-Bridged Diiron Carbonyl and S-Bridged Redox-Active Centres. INORGANICS 2019. [DOI: 10.3390/inorganics7030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The catalytic potential of linked redox centres is exemplified by the catalytic site of [FeFe]-hydrogenases, which feature a diiron subsite linked by a cysteinyl S atom to a 4Fe4S cube. The investigation of systems possessing similarly-linked redox sites is important because it provides a context for understanding the biological system and the rational design of abiological catalysts. The structural, electrochemical and spectroscopic properties of Fe2(CO)5(CH3C(CH2S)2CH2SPhNO2, I-bzNO2 and the aniline analogue, I-bzNH2, are described and IR spectroelectrochemical studies have allowed investigation of the reduction products and their reactions with CO and protons. These measurements have allowed identification of the nitrobenzenyl radical anion, quantification of the shifts of the (CO) bands on ligand-based reduction compared with NO2/NH2 exchange and protonation of the pendent ligand. The strength of thioether coordination is related to the electronic effects, where competitive binding studies with CO show that CO/thioether exchange can be initiated by redox processes of the pendent ligand. Stoichiometric multi electron/proton transfer reactions of I-bzNO2 localised on nitrobenzene reductions occur at mild potentials and a metal-centred reduction in the presence of protons does not lead to significant electrocatalytic proton reduction.
Collapse
|
5
|
Abul-Futouh H, Skabeev A, Botteri D, Zagranyarski Y, Görls H, Weigand W, Peneva K. Toward a Tunable Synthetic [FeFe]-Hydrogenase H-Cluster Mimic Mediated by Perylene Monoimide Model Complexes: Insight into Molecular Structures and Electrochemical Characteristics. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00450] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hassan Abul-Futouh
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
- Department of Pharmacy, Al-Zytoonah University of Jordan, P. O. Box 130, Amman 11733, Jordan
| | - Artem Skabeev
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Davide Botteri
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Yulian Zagranyarski
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Avenue, Sofia 1164, Bulgaria
| | - Helmar Görls
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Wolfgang Weigand
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
- Friedrich Schiller University, CEEC Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
6
|
Ghosh S, Rahaman A, Holt KB, Nordlander E, Richmond MG, Kabir SE, Hogarth G. Hydrogenase biomimetics with redox-active ligands: Electrocatalytic proton reduction by [Fe2(CO)4(κ2-diamine)(μ-edt)] (diamine = 2,2′-bipy, 1,10-phen). Polyhedron 2016. [DOI: 10.1016/j.poly.2016.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016; 116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - James M. Camara
- Department of Chemistry, Yeshiva University, 500 West 185th Street, New York, New York 10033, United States
| | - Mioy T. Huynh
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Khrizanforova VV, Knyazeva IR, Matveeva Sokolova VI, Nizameev IR, Gryaznova TV, Kadirov MK, Burilov AR, Sinyashin OG, Budnikova YH. Nickel Complexes Based on Thiophosphorylated Calix[4]Resorcinols as Effective Catalysts for Hydrogen Evolution. Electrocatalysis (N Y) 2015. [DOI: 10.1007/s12678-015-0251-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Newman GL, Rahman JMA, Gluyas JBG, Yufit DS, Howard JAK, Low PJ. Alkynyl-Phosphine Substituted Fe2S2 Clusters: Synthesis, Structure and Spectroelectrochemical Characterization of a Cluster with a Class III Mixed-Valence [FeFe]3+ Core. J CLUST SCI 2014. [DOI: 10.1007/s10876-014-0790-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Wen HM, Wang JY, Hu MQ, Li B, Chen ZN, Chen CN. Photoswitchable electrochemical behaviour of a [FeFe] hydrogenase model with a dithienylethene derivative. Dalton Trans 2012; 41:11813-9. [DOI: 10.1039/c2dt31507f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Matthews SL, Heinekey DM. An oxidized active site model for the FeFe hydrogenase: reduction with hydrogen gas. Inorg Chem 2011; 50:7925-7. [PMID: 21793493 DOI: 10.1021/ic2009573] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Models for the oxidized form of the FeFe hydrogenase active site have been prepared. These cationic complexes contain two iron atoms, carbonyl ligands, a propanedithiolate bridge, and one other bridging group. Reduction of these complexes with hydrogen gas is demonstrated.
Collapse
Affiliation(s)
- Steven L Matthews
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | | |
Collapse
|
12
|
Surawatanawong P, Tye JW, Darensbourg MY, Hall MB. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron–iron hydrogenase: A density functional theory study of proton dissociation constants and electrode reduction potentials. Dalton Trans 2010; 39:3093-104. [DOI: 10.1039/b925262b] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Greco C, Fantucci P, De Gioia L, Suarez-Bertoa R, Bruschi M, Talarmin J, Schollhammer P. Electrocatalytic dihydrogen evolution mechanism of [Fe2(CO)4(κ2-Ph2PCH2CH2PPh2)(μ-S(CH2)3S)] and related models of the [FeFe]-hydrogenases active site: a DFT investigation. Dalton Trans 2010; 39:7320-9. [DOI: 10.1039/b926040d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
|
15
|
Roy LE, Batista ER, Hay PJ. Theoretical studies on the redox potentials of Fe dinuclear complexes as models for hydrogenase. Inorg Chem 2008; 47:9228-37. [PMID: 18811143 DOI: 10.1021/ic800541w] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density Functional calculations have been performed at the uB3LYP and uBP86 levels to calculate the one-electron redox potentials for a series of small models based on the diiron hydrogenase enzymes in the presence of acetonitrile (MeCN). The solvation effects in MeCN are incorporated via a self-consistent reaction field (SCRF) using the polarized continuum model (PCM). The calculated redox potentials reproduce the trends in experimental data with an average error of only 0.12 V using the BP86 functional, whereas comparing results with the B3LYP functional require a systematic shift of -0.82 and -0.53 V for oxidation and reduction, respectively. The bonding orbitals and d-electron populations were examined using Mulliken population analysis, and the results were used to rationalize the calculated and observed redox potentials. These studies demonstrate that the redox potential correlates with the empirical spectrochemical series for the ligands, as well as with the amount of electron density donated by the ligand onto the Fe centers.
Collapse
Affiliation(s)
- Lindsay E Roy
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | |
Collapse
|
16
|
On the electrochemistry of diiron dithiolate complexes related to the active site of the [FeFe]H2ase. CR CHIM 2008. [DOI: 10.1016/j.crci.2008.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Borg SJ, Ibrahim SK, Pickett CJ, Best SP. Electrocatalysis of hydrogen evolution by synthetic diiron units using weak acids as the proton source: Pathways of doubtful relevance to enzymic catalysis by the diiron subsite of [FeFe] hydrogenase. CR CHIM 2008. [DOI: 10.1016/j.crci.2008.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Greco C, Zampella G, Bertini L, Bruschi M, Fantucci P, De Gioia L. Insights into the Mechanism of Electrocatalytic Hydrogen Evolution Mediated by Fe2(S2C3H6)(CO)6: The Simplest Functional Model of the Fe-Hydrogenase Active Site. Inorg Chem 2007; 46:108-16. [PMID: 17198418 DOI: 10.1021/ic061168+] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The di-iron complex Fe2(S2C3H6)(CO)6 (a), one of the simplest functional models of the Fe-hydrogenases active site, is able to electrocatalyze proton reduction. In the present study, the H2 evolving path catalyzed by a has been characterized using density functional theory. It is showed that, in the early stages of the catalytic cycle, a neutral mu-H adduct is formed; monoelectron reduction and subsequent protonation can give rise to a diprotonated neutral species (a-muH-SH), which is characterized by a mu-H group, a protonated sulfur atom, and a CO group bridging the two iron centers, in agreement with experimental IR data indicating the formation of a long-lived mu7-CO species. H2 release from a-muH-SH, and its less stable isomer a-H2 is kinetically unfavorable, while the corresponding monoanionic compounds (a-muH-SH- and a-H2-) are more reactive in terms of dihydrogen evolution, in agreement with experimental data. The key species involved in electrocatalysis have structural features different from the hypothetical intermediates recently proposed to be involved in the enzymatic process, an observation that is possibly correlated with the reduced catalytic efficiency of the biomimetic di-iron assembly.
Collapse
Affiliation(s)
- Claudio Greco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 2006; 103:15729-35. [PMID: 17043226 PMCID: PMC1635072 DOI: 10.1073/pnas.0603395103] [Citation(s) in RCA: 4290] [Impact Index Per Article: 225.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global energy consumption is projected to increase, even in the face of substantial declines in energy intensity, at least 2-fold by midcentury relative to the present because of population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO(2) emissions in the atmosphere demands that holding atmospheric CO(2) levels to even twice their preanthropogenic values by midcentury will require invention, development, and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable energy resources, solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year. In view of the intermittency of insolation, if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user. An especially attractive approach is to store solar-converted energy in the form of chemical bonds, i.e., in a photosynthetic process at a year-round average efficiency significantly higher than current plants or algae, to reduce land-area requirements. Scientific challenges involved with this process include schemes to capture and convert solar energy and then store the energy in the form of chemical bonds, producing oxygen from water and a reduced fuel such as hydrogen, methane, methanol, or other hydrocarbon species.
Collapse
Affiliation(s)
- Nathan S. Lewis
- *Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and
- To whom correspondence may be addressed. E-mail:
or
| | - Daniel G. Nocera
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|