1
|
Han Y, Lin CY, Niu L. Functional Roles of the Edited Isoform of GluA2 in GluA2-Containing AMPA Receptor Channels. Biochemistry 2017; 56:1620-1631. [DOI: 10.1021/acs.biochem.6b01041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yan Han
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, State University of New York, Albany, New York 12222, United Stated
| | - Chi-Yen Lin
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, State University of New York, Albany, New York 12222, United Stated
| | - Li Niu
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, State University of New York, Albany, New York 12222, United Stated
| |
Collapse
|
2
|
van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones D, Kim PM, Kriwacki R, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright P, Babu MM. Classification of intrinsically disordered regions and proteins. Chem Rev 2014; 114:6589-631. [PMID: 24773235 PMCID: PMC4095912 DOI: 10.1021/cr400525m] [Citation(s) in RCA: 1475] [Impact Index Per Article: 147.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Robin van der Lee
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Centre
for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6500 HB Nijmegen, The
Netherlands
| | - Marija Buljan
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Benjamin Lang
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Gary W. Daughdrill
- Department
of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 3720 Spectrum Boulevard, Suite 321, Tampa, Florida 33612, United States
| | - A. Keith Dunker
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Monika Fuxreiter
- MTA-DE
Momentum Laboratory of Protein Dynamics, Department of Biochemistry
and Molecular Biology, University of Debrecen, H-4032 Debrecen, Nagyerdei krt 98, Hungary
| | - Julian Gough
- Department
of Computer Science, University of Bristol, The Merchant Venturers Building, Bristol BS8 1UB, United Kingdom
| | - Joerg Gsponer
- Department
of Biochemistry and Molecular Biology, Centre for High-Throughput
Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David
T. Jones
- Bioinformatics
Group, Department of Computer Science, University
College London, London, WC1E 6BT, United Kingdom
| | - Philip M. Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular
Genetics, and Department of Computer Science, University
of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Richard
W. Kriwacki
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
| | - Christopher J. Oldfield
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Rohit V. Pappu
- Department
of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Peter Tompa
- VIB Department
of Structural Biology, Vrije Universiteit
Brussel, Brussels, Belgium
- Institute
of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Vladimir N. Uversky
- Department
of Molecular Medicine and USF Health Byrd Alzheimer’s Research
Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation,
Russian Academy of Sciences, Pushchino,
Moscow Region, Russia
| | - Peter
E. Wright
- Department
of Integrative Structural and Computational Biology and Skaggs Institute
of Chemical Biology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - M. Madan Babu
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
3
|
Green DJ, Wang JC, Xiao F, Cai Y, Balhorn R, Guo P, Cheng RH. Self-assembly of heptameric nanoparticles derived from tag-functionalized phi29 connectors. ACS NANO 2010; 4:7651-7659. [PMID: 21080706 DOI: 10.1021/nn1024829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The structure of an induced macromolecular assembly was characterized and found to consist of an ordered heptameric arrangement of recombinant phi29 gp10 connector molecules. Insertion of an N-terminal Strep-II/His(6) tag to the connectors led to the spontaneous formation of large nanoparticles that were distinct from free, wild-type phi29 connectors in both size and symmetry elements. The determination of single-molecule tomograms and image-averaged reconstructions allowed for the stoichiometric and topological characterization of the ordered assemblage, revealing that the nanoparticle is composed of five equatorial connectors arranged with pseudo-5-fold rotational symmetry, capped on its ends by two polar connectors. Additionally, all seven connectors are oriented with their narrower N-terminal necks into the nanoparticle core and wider C-terminal ends out toward the nanoparticle surface, a geometric arrangement accommodated by the shape complementarity of the conical connector profiles. A significant amount of conformational heterogeneity was detected, ranging from changes in overall nanoparticle diameter, to tilting of individual connectors, to variations in connector stoichiometry. Nevertheless, a stable, heptameric nanoparticle was resolved, revealing the significant potential of guided, peptide-mediated supramolecular self-assembly. With this construct, we anticipate the further design of variable N-terminal tags to allow for the generation of nanoparticles with tailored connector stoichiometry and topological arrangements. By modifying the surface-exposed C-terminal ends with application-appropriate moieties, the consistent structure and compact nature of these nanoparticles may prove beneficial in nanotechnological and nanomedical approaches.
Collapse
Affiliation(s)
- Dominik J Green
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell 2009; 17:639-47. [PMID: 19922869 DOI: 10.1016/j.devcel.2009.10.017] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The principles of self-assembly and self-organization are major tenets of molecular and cellular biology. Governed by these principles, the eukaryotic nucleus is composed of numerous subdomains and compartments, collectively described as nuclear bodies. Emerging evidence reveals that associations within and between various nuclear bodies and genomic loci are dynamic and can change in response to cellular signals. This review will discuss recent progress in our understanding of how nuclear body components come together, what happens when they form, and what benefit these subcellular structures may provide to the tissues or organisms in which they are found.
Collapse
|
6
|
Targeted delivery with peptidomimetic conjugated self-assembled nanoparticles. Pharm Res 2008; 26:612-30. [PMID: 19085091 DOI: 10.1007/s11095-008-9802-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 12/01/2008] [Indexed: 12/28/2022]
Abstract
Peptides produce specific nanostructures, making them useful for targeting in biological systems but they have low bioavailability, potential immunogenicity and poor metabolic stability. Peptidomimetic self-assembled NPs can possess biological recognition motifs as well as providing desired engineering properties. Inorganic NPs, coated with self-assembled macromers for stability and anti-fouling, and conjugated with target-specific ligands, are advancing imaging from the anatomy-based level to the molecular level. Ligand conjugated NPs are attractive for cell-selective tumor drug delivery, since this process has high transport capacity as well as ligand dependent cell specificity. Peptidomimetic NPs can provide stronger interaction with surface receptors on tumor cells, resulting in higher uptake and reduced drug resistance. Self-assembled NPs conjugated with peptidomimetic antigens are ideal for sustained presentation of vaccine antigens to dendritic cells and subsequent activation of T cell mediated adaptive immune response. Self-assembled NPs are a viable alternative to encapsulation for sustained delivery of proteins in tissue engineering. Cell penetrating peptides conjugated to NPs are used as intracellular delivery vectors for gene expression and as transfection agents for plasmid delivery. In this work, synthesis, characterization, properties, immunogenicity, and medical applications of peptidomimetic NPs in imaging, tumor delivery, vaccination, tissue engineering, and intracellular delivery are reviewed.
Collapse
|