1
|
Li Z, Yuan X, Wang Y, Sun Z, Ao J. DNAJA1 positively regulates amino acid-stimulated milk protein and fat synthesis in bovine mammary epithelial cells. Cell Biochem Funct 2024; 42:e3918. [PMID: 38269516 DOI: 10.1002/cbf.3918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Several cellular processes, including the recovery of misfolded proteins, the folding of polypeptide chains, transit of polypeptides across the membrane, construction and disassembly of protein complexes, and modulation of protein control, are carried out by DnaJ homolog subfamily A member 1 (DNAJA1), which belongs to the DnaJ heat-shock protein family. It is unknown if DNAJA1 regulates the production of milk in bovine mammary epithelium cells (BMECs). Methionine and leucine increased DNAJA1 expression and nuclear location, as seen by us. In contrast to DNAJA1 knockdown, overexpression of DNAJA1 boosted the production of milk proteins and fats as well as mammalian target of rapamycin (mTOR) and sterol regulatory element binding protein-1c (SREBP-1c). As a result of amino acids, mTOR and SREBP-1c gene expression are stimulated, and DNAJA1 is a positive regulator of BMECs' amino acid-induced controlled milk protein and fat production.
Collapse
Affiliation(s)
- Zhuolin Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Xiaohan Yuan
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Yuanhao Wang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Zheya Sun
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Jinxia Ao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Okoro OE, Camera E, Flori E, Ottaviani M. Insulin and the sebaceous gland function. Front Physiol 2023; 14:1252972. [PMID: 37727660 PMCID: PMC10505787 DOI: 10.3389/fphys.2023.1252972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
Insulin affects metabolic processes in different organs, including the skin. The sebaceous gland (SG) is an important appendage in the skin, which responds to insulin-mediated signals, either directly or through the insulin growth factor 1 (IGF-1) axis. Insulin cues are differently translated into the activation of metabolic processes depending on several factors, including glucose levels, receptor sensitivity, and sebocyte differentiation. The effects of diet on both the physiological function and pathological conditions of the SG have been linked to pathways activated by insulin and IGF-1. Experimental evidence and theoretical speculations support the association of insulin resistance with acne vulgaris, which is a major disorder of the SG. In this review, we examined the effects of insulin on the SG function and their implications in the pathogenesis of acne.
Collapse
Affiliation(s)
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Dowsett L, Duluc L, Higgins E, Alghamdi F, Fast W, Salt IP, Leiper J. Asymmetric dimethylarginine positively modulates calcium-sensing receptor signalling to promote lipid accumulation. Cell Signal 2023; 107:110676. [PMID: 37028778 DOI: 10.1016/j.cellsig.2023.110676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Asymmetric dimethylarginine (ADMA) is generated through the irreversible methylation of arginine residues. It is an independent risk factor for cardiovascular disease, currently thought to be due to its ability to act as a competitive inhibitor of the nitric oxide (NO) synthase enzymes. Plasma ADMA concentrations increase with obesity and fall following weight loss; however, it is unknown whether they play an active role in adipose pathology. Here, we demonstrate that ADMA drives lipid accumulation through a newly identified NO-independent pathway via the amino-acid sensitive calcium-sensing receptor (CaSR). ADMA treatment of 3 T3-L1 and HepG2 cells upregulates a suite of lipogenic genes with an associated increase in triglyceride content. Pharmacological activation of CaSR mimics ADMA while negative modulation of CaSR inhibits ADMA driven lipid accumulation. Further investigation using CaSR overexpressing HEK293 cells demonstrated that ADMA potentiates CaSR signalling via Gq intracellular Ca2+ mobilisation. This study identifies a signalling mechanism for ADMA as an endogenous ligand of the G protein-coupled receptor CaSR that potentially contributes to the impact of ADMA in cardiometabolic disease.
Collapse
Affiliation(s)
- Laura Dowsett
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK.
| | - Lucie Duluc
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Erin Higgins
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fatmah Alghamdi
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
| | - Ian P Salt
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - James Leiper
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| |
Collapse
|
4
|
Bengoechea-Alonso MT, Aldaalis A, Ericsson J. Loss of the Fbw7 tumor suppressor rewires cholesterol metabolism in cancer cells leading to activation of the PI3K-AKT signalling axis. Front Oncol 2022; 12:990672. [PMID: 36176395 PMCID: PMC9513553 DOI: 10.3389/fonc.2022.990672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
The sterol regulatory-element binding proteins (SREBPs) are transcription factors controlling cholesterol and fatty acid synthesis and metabolism. There are three SREBP proteins, SREBP1a, SREBP1c and SREBP2, with SREBP1a being the strongest transcription factor. The expression of SREBP1a is restricted to rapidly proliferating cells, including cancer cells. The SREBP proteins are translated as large, inactive precursors bound to the endoplasmic reticulum (ER) membranes. These precursors undergo a two-step cleavage process that releases the amino terminal domains of the proteins, which translocate to the nucleus and function as transcription factors. The nuclear forms of the SREBPs are rapidly degraded by the ubiquitin-proteasome system in a manner dependent on the Fbw7 ubiquitin ligase. Consequently, inactivation of Fbw7 results in the stabilization of active SREBP1 and SREBP2 and enhanced expression of target genes. We report that the inactivation of Fbw7 in cancer cells blocks the proteolytic maturation of SREBP2. The same is true in cells expressing a cancer-specific loss-of-function Fbw7 protein. Interestingly, the activation of SREBP2 is restored in response to cholesterol depletion, suggesting that Fbw7-deficient cells accumulate cholesterol. Importantly, inactivation of SREBP1 in Fbw7-deficient cells also restores the cholesterol-dependent regulation of SREBP2, suggesting that the stabilization of active SREBP1 molecules could be responsible for the blunted activation of SREBP2 in Fbw7-deficient cancer cells. We suggest that this could be an important negative feedback loop in cancer cells with Fbw7 loss-of-function mutations to protect these cells from the accumulation of toxic levels of cholesterol and/or cholesterol metabolites. Surprisingly, we also found that the inactivation of Fbw7 resulted in the activation of AKT. Importantly, the activation of AKT was dependent on SREBP1 and on the accumulation of cholesterol. Thus, we suggest that the loss of Fbw7 rewires lipid metabolism in cancer cells to support cell proliferation and survival.
Collapse
Affiliation(s)
- Maria T. Bengoechea-Alonso
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Arwa Aldaalis
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Johan Ericsson
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- *Correspondence: Johan Ericsson,
| |
Collapse
|
5
|
Aldaalis A, Bengoechea-Alonso MT, Ericsson J. The SREBP-dependent regulation of cyclin D1 coordinates cell proliferation and lipid synthesis. Front Oncol 2022; 12:942386. [PMID: 36091143 PMCID: PMC9451027 DOI: 10.3389/fonc.2022.942386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
The sterol regulatory-element binding protein (SREBP) family of transcription factors regulates cholesterol, fatty acid, and triglyceride synthesis and metabolism. However, they are also targeted by the ubiquitin ligase Fbw7, a major tumor suppressor, suggesting that they could regulate cell growth. Indeed, enhanced lipid synthesis is a hallmark of many human tumors. Thus, the SREBP pathway has recently emerged as a potential target for cancer therapy. We have previously demonstrated that one of these transcription factors, SREBP1, is stabilized and remains associated with target promoters during mitosis, suggesting that the expression of these target genes could be important as cells enter G1 and transcription is restored. Activation of cyclin D-cdk4/6 complexes is critical for the phosphorylation and inactivation of the retinoblastoma protein (Rb) family of transcriptional repressors and progression through the G1 phase of the cell cycle. Importantly, the cyclin D-cdk4/6-Rb regulatory axis is frequently dysregulated in human cancer. In the current manuscript, we demonstrate that SREBP1 activates the expression of cyclin D1, a coactivator of cdk4 and cdk6, by binding to an E-box in the cyclin D1 promoter. Consequently, inactivation of SREBP1 in human liver and breast cancer cell lines reduces the expression of cyclin D1 and attenuates Rb phosphorylation. Rb phosphorylation in these cells can be rescued by restoring cyclin D1 expression. On the other hand, expression of active SREBP1 induced the expression of cyclin D1 and increased the phosphorylation of Rb in a manner dependent on cyclin D1 and cdk4/6 activity. Inactivation of SREBP1 resulted in reduced expression of cyclin D1, attenuated phosphorylation of Rb, and reduced proliferation. Inactivation of SREBP1 also reduced the insulin-dependent regulation of the cyclin D1 gene. At the same time, SREBP1 is known to play an important role in supporting lipid synthesis in cancer cells. Thus, we propose that the SREBP1-dependent regulation of cyclin D1 coordinates cell proliferation with the enhanced lipid synthesis required to support cell growth.
Collapse
Affiliation(s)
- Arwa Aldaalis
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Maria T. Bengoechea-Alonso
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Johan Ericsson
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- *Correspondence: Johan Ericsson,
| |
Collapse
|
6
|
mTOR: A Potential New Target in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23169196. [PMID: 36012464 PMCID: PMC9409235 DOI: 10.3390/ijms23169196] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) continues to rise, yet effective treatments are lacking due to the complex pathogenesis of this disease. Although recent research has provided evidence for the “multiple strikes” theory, the classic “two strikes” theory has not been overturned. Therefore, there is a crucial need to identify multiple targets in NAFLD pathogenesis for the development of diagnostic markers and targeted therapeutics. Since its discovery, the mechanistic target of rapamycin (mTOR) has been recognized as the central node of a network that regulates cell growth and development and is closely related to liver lipid metabolism and other processes. This paper will explore the mechanisms by which mTOR regulates lipid metabolism (SREBPs), insulin resistance (Foxo1, Lipin1), oxidative stress (PIG3, p53, JNK), intestinal microbiota (TLRs), autophagy, inflammation, genetic polymorphisms, and epigenetics in NAFLD. The specific influence of mTOR on NAFLD was hypothesized to be divided into micro regulation (the mechanism of mTOR’s influence on NAFLD factors) and macro mediation (the relationship between various influencing factors) to summarize the influence of mTOR on the developmental process of NAFLD, and prove the importance of mTOR as an influencing factor of NAFLD regarding multiple aspects. The effects of crosstalk between mTOR and its upstream regulators, Notch, Hedgehog, and Hippo, on the occurrence and development of NAFLD-associated hepatocellular carcinoma are also summarized. This analysis will hopefully support the development of diagnostic markers and new therapeutic targets in NAFLD.
Collapse
|
7
|
Dong W, Zhang X, Kong Y, Zhao Z, Mahmoud A, Wu L, Moussian B, Zhang J. CYP311A1 in the anterior midgut is involved in lipid distribution and microvillus integrity in Drosophila melanogaster. Cell Mol Life Sci 2022; 79:261. [PMID: 35478270 PMCID: PMC11072108 DOI: 10.1007/s00018-022-04283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/01/2022] [Indexed: 11/03/2022]
Abstract
Lipids are either taken up from food sources or produced internally in specialized tissues such as the liver. Among others, both routes of lipid metabolism involve cytochrome P450 monooxygenases (CYPs). We sought to analyze the function of Cyp311a1 that has been shown to be expressed in the midgut of the fruit fly Drosophila melanogaster. Using a GFP-tagged version of CYP311A1 that is expressed under the control of its endogenous promoter, we show that Cyp311a1 localizes to the endoplasmic reticulum in epithelial cells of the anterior midgut. In larvae with reduced Cyp311a1 expression in the anterior midgut, compared to control larvae, the apical plasma membrane of the respective epithelial cells contains less and shorter microvilli. In addition, we observed reduction of neutral lipids in the fat body, the insect liver, and decreased phosphatidylethanolamine (PE) and triacylglycerols (TAG) amounts in the whole body of these larvae. Probably as a consequence, they cease to grow and eventually die. The microvillus defects in larvae with reduced Cyp311a1 expression are restored by supplying PE, a major phospholipid of plasma membranes, to the food. Moreover, the growth arrest phenotype of these larvae is partially rescued. Together, these results suggest that the anterior midgut is an import hub in lipid distribution and that the midgut-specific CYP311A1 contributes to this function by participating in shaping microvilli in a PE-dependent manner.
Collapse
Affiliation(s)
- Wei Dong
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Xubo Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yue Kong
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Ali Mahmoud
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse-108, 01307, Dresden, Germany
| | - Lixian Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Bernard Moussian
- Université Côte d'Azur, Parc Valrose, 06108, Nice Cedex 2, France.
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
8
|
Arora M, Kutinová Canová N, Farghali H. mTOR as an eligible molecular target for possible pharmacological treatment of nonalcoholic steatohepatitis. Eur J Pharmacol 2022; 921:174857. [DOI: 10.1016/j.ejphar.2022.174857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
|
9
|
Abstract
The ageing population is becoming a significant socio-economic issue. To address the expanding health gap, it is important to deepen our understanding of the mechanisms underlying ageing in various organisms at the single-cell level. The discovery of the antifungal, immunosuppressive, and anticancer drug rapamycin, which possesses the ability to extend the lifespan of several species, has prompted extensive research in the areas of cell metabolic regulation, development, and senescence. At the centre of this research is the mTOR pathway, with key roles in cell growth, proteosynthesis, ribosomal biogenesis, transcriptional regulation, glucose and lipid metabolism, and autophagy. Recently, it has become obvious that mTOR dysregulation is involved in several age-related diseases, such as cancer, neurodegenerative diseases, and type 2 diabetes mellitus. Additionally, mTOR hyperactivation affects the process of ageing per se. In this review, we provide an overview of recent insights into the mTOR signalling pathway, including its regulation and its influence on various hallmarks of ageing at the cellular level.
Collapse
Affiliation(s)
- Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
10
|
UFL1 regulates milk protein and fat synthesis-related gene expression of bovine mammary epithelial cells probably via the mTOR signaling pathway. In Vitro Cell Dev Biol Anim 2021; 57:550-559. [PMID: 34081293 DOI: 10.1007/s11626-021-00587-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
UFL1 is an ufmylation (a novel post-translational modification) E3 ligase, mainly located in the endoplasmic reticulum (ER), that has emerged as a significant regulator of several physiological and pathological processes. Yet its physiological function in milk synthesis in bovine mammary epithelial cells (BMECs) remains unknown. In this study, we investigated the effects of UFL1 in milk protein and fat synthesis-related gene expression, with a particular emphasis on the role of UFL1 in LPS-treated BMECs. Results showed that UFL1 depletion significantly reduced the expression of milk protein and fat synthesis-related gene and mTOR phosphorylation in both normal and LPS-treated BMECs. Overexpression of UFL1 enhanced the activation of the mTOR and milk protein and fat synthesis-related gene expression. Collectively, these above results strongly demonstrate that UFL1 could regulate milk protein and fat synthesis-related gene expression of BMECs probably via the mTOR signaling pathway.
Collapse
|
11
|
Lasunción MA, Martínez-Botas J, Martín-Sánchez C, Busto R, Gómez-Coronado D. Cell cycle dependence on the mevalonate pathway: Role of cholesterol and non-sterol isoprenoids. Biochem Pharmacol 2021; 196:114623. [PMID: 34052188 DOI: 10.1016/j.bcp.2021.114623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
The mevalonate pathway is responsible for the synthesis of isoprenoids, including sterols and other metabolites that are essential for diverse biological functions. Cholesterol, the main sterol in mammals, and non-sterol isoprenoids are in high demand by rapidly dividing cells. As evidence of its importance, many cell signaling pathways converge on the mevalonate pathway and these include those involved in proliferation, tumor-promotion, and tumor-suppression. As well as being a fundamental building block of cell membranes, cholesterol plays a key role in maintaining their lipid organization and biophysical properties, and it is crucial for the function of proteins located in the plasma membrane. Importantly, cholesterol and other mevalonate derivatives are essential for cell cycle progression, and their deficiency blocks different steps in the cycle. Furthermore, the accumulation of non-isoprenoid mevalonate derivatives can cause DNA replication stress. Identification of the mechanisms underlying the effects of cholesterol and other mevalonate derivatives on cell cycle progression may be useful in the search for new inhibitors, or the repurposing of preexisting cholesterol biosynthesis inhibitors to target cancer cell division. In this review, we discuss the dependence of cell division on an active mevalonate pathway and the role of different mevalonate derivatives in cell cycle progression.
Collapse
Affiliation(s)
- Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Covadonga Martín-Sánchez
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
12
|
Zhong W, Shen J, Liao X, Liu X, Zhang J, Zhou C, Jin Y. Camellia ( Camellia oleifera Abel.) seed oil promotes milk fat and protein synthesis-related gene expression in bovine mammary epithelial cells. Food Sci Nutr 2020; 8:419-427. [PMID: 31993168 PMCID: PMC6977417 DOI: 10.1002/fsn3.1326] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Camellia (Camellia oleifera Abel.) seed oil is a commonly used edible oil of China. In ancient Chinese literature, it is mentioned to be helpful for postpartum repair and lactation in women. Research on camellia seed oil (CO) as a feed additive for dairy cattle is less. We investigated the effect of CO on the expression of milk fat and protein syntheses-related genes in differentiated bovine mammary epithelial cells (MAC-T) using soybean oil (SO) as the control. The results showed that CO increased the expression of genes related to de novo synthesis of fatty acids including sterol regulatory element-binding protein 1 (SREBP1), acetyl-CoA carboxylase 1 (ACC), fatty acid synthase (FASN), lipoprotein lipase (LPL), and stearoyl-CoA desaturase (SCD) (p < .05). Among the milk protein genes analyzed, CO increased β-casein mRNA expression (p < .05) and decreased αS1-casein mRNA expression (p < .05) in MAC-T cells. CO upregulated the pathways related to milk protein synthesis with increased mRNA levels of phosphoinositide 3-kinase (PI3K), RAC-alpha serine/threonine-protein kinase (AKT1), and mammalian target of rapamycin (mTOR) (p < .05) in MAC-T cells. Ribosomal protein S6 kinase beta-1 (S6K1) gene was upregulated, and eukaryotic initiation factor 4E (eIF4E) gene (p < .05) was downregulated with CO treatment. The mRNA expression levels of janus kinase 2 (JAK2), activator of transcription 5-β (STAT5-β), and E74-like factor 5 (ELF5) were elevated in MAC-T cells treated with CO (p < .05). Meanwhile, the protein expression levels of S6K1, STAT5-β, phosphorylated mTOR (p-mTOR), p-S6K1, and p-STAT5-β increased in MAC-T cells treated with CO (p < .05). In summary, CO promoted β-casein synthesis by regulating PI3K-mTOR-S6K1 and JAK2-STAT5 signaling pathways and influenced fatty acid synthesis by regulating SREBP1-related genes in MAC-T cells. We need to further confirm the function of CO using in vivo models.
Collapse
Affiliation(s)
- Wanqi Zhong
- Department of Animal ScienceCollege of Animal ScienceJilin UniversityChangchunChina
| | - Jinglin Shen
- Department of Animal ScienceCollege of Animal ScienceJilin UniversityChangchunChina
| | - Xiandong Liao
- Department of Animal ScienceCollege of Animal ScienceJilin UniversityChangchunChina
| | - Xinlu Liu
- Department of Animal ScienceCollege of Animal ScienceJilin UniversityChangchunChina
| | - Jing Zhang
- Department of Animal ScienceCollege of Animal ScienceJilin UniversityChangchunChina
| | - Changhai Zhou
- Department of Animal ScienceCollege of Animal ScienceJilin UniversityChangchunChina
| | - Yongcheng Jin
- Department of Animal ScienceCollege of Animal ScienceJilin UniversityChangchunChina
| |
Collapse
|
13
|
Zhen Z, Zhang M, Yuan X, Li M. Transcription factor E2F4 is a positive regulator of milk biosynthesis and proliferation of bovine mammary epithelial cells. Cell Biol Int 2020; 44:229-241. [PMID: 31475773 DOI: 10.1002/cbin.11225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/22/2019] [Indexed: 01/24/2023]
Abstract
The transcription factor E2F4 is a key determinant of cell differentiation and cell-cycle progression, but its function and regulatory mechanism are not completely understood. Here, we report that E2F4 acts as a positive regulator of the biosynthesis of milk components and proliferation of bovine mammary epithelial cells (BMECs). Overexpression of E2F4 in BMECs resulted in the upregulation of β-casein, triglyceride, and lactose levels and increased cell proliferation, whereas E2F4 knockdown by small interfering RNA had the opposite effects. We further detected that overexpression of E2F4 significantly increased the messenger RNA expression of mTOR, SREBP-1c, and Cyclin D1, and increased protein levels of SREBP-1c, and Cyclin D1, and the ratio of p-mTOR/mTOR, whereas E2F4 knockdown had the opposite effects. E2F4 was almost entirely located in the nucleus, and we further identified, via ChIP-qPCR analysis, that mTOR, SREBP-1c, and Cyclin D1 were E2F4 target genes, and exogenous administration of methionine, leucine, β-estradiol, and prolactin markedly increased the protein levels of E2F4 and its binding to the promoters of these three genes. In summary, our data reveal that E2F4 responds to extracellular stimuli and regulates the expression of mTOR, SREBP-1c, and Cyclin D1 for milk biosynthesis and proliferation of BMECs.
Collapse
Affiliation(s)
- Zhen Zhen
- The Key Laboratory of Dairy Science of Education Ministry, Food College, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Minghui Zhang
- The Key Laboratory of Dairy Science of Education Ministry, Food College, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Xiaohan Yuan
- The Key Laboratory of Dairy Science of Education Ministry, Food College, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Meng Li
- The Key Laboratory of Dairy Science of Education Ministry, Food College, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| |
Collapse
|
14
|
Abstract
Organismal aging is accompanied by a host of progressive metabolic alterations and an accumulation of senescent cells, along with functional decline and the appearance of multiple diseases. This implies that the metabolic features of cell senescence may contribute to the organism’s metabolic changes and be closely linked to age-associated diseases, especially metabolic syndromes. However, there is no clear understanding of senescent metabolic characteristics. Here, we review key metabolic features and regulators of cellular senescence, focusing on mitochondrial dysfunction and anabolic deregulation, and their link to other senescence phenotypes and aging. We further discuss the mechanistic involvement of the metabolic regulators mTOR, AMPK, and GSK3, proposing them as key metabolic switches for modulating senescence.
Collapse
Affiliation(s)
- So Mee Kwon
- Departments of Biochemistry, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sun Mi Hong
- Departments of Biochemistry and Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon 16499, Korea
| | - Young-Kyoung Lee
- Departments of Biochemistry, Ajou University School of Medicine, Suwon 16499, Korea
| | - Seongki Min
- Departments of Biochemistry and Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon 16499, Korea
| | - Gyesoon Yoon
- Departments of Biochemistry and Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
15
|
Yu Y, Zhen Z, Qi H, Yuan X, Gao X, Zhang M. U2AF65 enhances milk synthesis and growth of bovine mammary epithelial cells by positively regulating the mTOR-SREBP-1c signalling pathway. Cell Biochem Funct 2019; 37:93-101. [PMID: 30773658 DOI: 10.1002/cbf.3378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/14/2022]
Abstract
U2 snRNP auxiliary factor 65 kDa (U2AF65) is a splicing factor that promotes prespliceosome assembly. The function of U2AF65 in alternative splicing has been identified; however, the essential physiological role of U2AF65 remains poorly understood. In this study, we investigated the regulatory role of U2AF65 in milk synthesis and growth of bovine mammary epithelial cells (BMECs). Our results showed that U2AF65 localizes in the nucleus. Treatment with amino acids (Met and Leu) and hormones (prolactin and β-estradiol) upregulated the expression of U2AF65 in these cells. U2AF65 overexpression increased the synthesis of β-casein, triglycerides, and lactose; increased cell viability; and promoted proliferation of BMECs. Furthermore, our results showed that U2AF65 positively regulated mTOR phosphorylation and expression of mature mRNA of mTOR and SREBP-1c. Collectively, our findings demonstrate that U2AF65 regulates the mRNA expression of signalling molecules (mTOR and SREBP-1c) involved in milk synthesis and growth of BMECs, possibly via controlling the splicing and maturation of these mRNAs. U2 snRNP auxiliary factor 65 kDa (U2AF65) is a splicing factor that promotes prespliceosome assembly. The essential physiological role of U2AF65 remains poorly understood. In the present study, we confirmed that U2AF65 functions as a positive regulator of milk synthesis in and proliferation of bovine mammary epithelial cells via the mTOR-SREBP-1c signalling pathway. Therefore, our study uncovers the regulatory role of U2AF65 in milk synthesis and cell proliferation.
Collapse
Affiliation(s)
- Yanbo Yu
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Zhen Zhen
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Hao Qi
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xiaohan Yuan
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xuejun Gao
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Minghui Zhang
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Raspberry ketone and Garcinia Cambogia rebalanced disrupted insulin resistance and leptin signaling in rats fed high fat fructose diet. Biomed Pharmacother 2019; 110:500-509. [DOI: 10.1016/j.biopha.2018.11.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023] Open
|
17
|
Daily Intake of Soft Drinks and Moderate-to-Severe Acne Vulgaris in Chinese Adolescents. J Pediatr 2019; 204:256-262.e3. [PMID: 30274928 DOI: 10.1016/j.jpeds.2018.08.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/25/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To investigate the association of soft drink consumption and the intake of sugar from soft drinks with the prevalence of acne in adolescents. STUDY DESIGN This was a university-based epidemiologic investigation that included 8226 students who underwent health examinations and a questionnaire survey inquiring about the intake of soft drinks. Skin diseases were diagnosed by certificated dermatologists during the health examination. Two-level logistic and generalized additive models were used to estimate the associations, and aORs were presented as the effect size. RESULTS A total of 8197 student survey responses were analyzed. Frequent intake (≥7 times per week) of carbonated sodas (aOR 1.61, 95% CI 0.96-2.72), sweetened tea drinks (aOR 2.52, 95% CI 1.43-4.43), and fruit-flavored drinks (aOR 1.90, 95% CI 1.18-3.07) was associated with moderate-to-severe acne after adjustments for confounders. The occasional intake of fruit-flavored drinks (1-2 times per week) had a weak protective effect on acne (aOR 0.86, 95% CI 0.74-0.99). The intake of sugar from any soft drinks showed a nonlinear association with acne (P < .01), and sugar intake ≥100 g/d was significantly associated with moderate-to-severe acne (aOR 3.12, 95% CI 1.80-5.41). CONCLUSIONS Daily soft drink consumption significantly increases the risk of moderate-to-severe acne in adolescents, especially when the sugar intake from any type of soft drink exceeds 100 g per day.
Collapse
|
18
|
Ramapriyan R, Caetano MS, Barsoumian HB, Mafra ACP, Zambalde EP, Menon H, Tsouko E, Welsh JW, Cortez MA. Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol Ther 2018; 195:162-171. [PMID: 30439456 DOI: 10.1016/j.pharmthera.2018.11.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many metabolic alterations, including the Warburg effect, occur in cancer cells that influence the tumor microenvironment, including switching to glycolysis from oxidative phosphorylation, using opportunistic modes of nutrient acquisition, and increasing lipid biosynthesis. The altered metabolic landscape of the tumor microenvironment can suppress the infiltration of immune cells and other functions of antitumor immunity through the production of immune-suppressive metabolites. Metabolic dysregulation in cancer cells further affects the expression of cell surface markers, which interferes with immune surveillance. Immune checkpoint therapies have revolutionized the standard of care for some patients with cancer, but disease in many others is resistant to immunotherapy. Specific metabolic pathways involved in immunotherapy resistance include PI3K-Akt-mTOR, hypoxia-inducible factor (HIF), adenosine, JAK/STAT, and Wnt/Beta-catenin. Depletion of essential amino acids such as glutamine and tryptophan and production of metabolites like kynurenine in the tumor microenvironment also blunt immune cell function. Targeted therapies against metabolic checkpoints could work in synergy with immune checkpoint therapy. This combined strategy could be refined by profiling patients' mutation status before treatment and identifying the optimal sequencing of therapies. This personalized combinatorial approach, which has yet to be explored, may well pave the way for overcoming resistance to immunotherapy.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mauricio S Caetano
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B Barsoumian
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ana Carolina P Mafra
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Erika Pereira Zambalde
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hari Menon
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Efrosini Tsouko
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States
| | - James W Welsh
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
19
|
Abstract
The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that senses and integrates environmental information into cellular regulation and homeostasis. Accumulating evidence has suggested a master role of mTOR signalling in many fundamental aspects of cell biology and organismal development. mTOR deregulation is implicated in a broad range of pathological conditions, including diabetes, cancer, neurodegenerative diseases, myopathies, inflammatory, infectious, and autoimmune conditions. Here, we review recent advances in our knowledge of mTOR signalling in mammalian physiology. We also discuss the impact of mTOR alteration in human diseases and how targeting mTOR function can treat human diseases.
Collapse
Affiliation(s)
- Yassine El Hiani
- a Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2, Canada
| | - Emmanuel Eroume-A Egom
- b Jewish General Hospital and Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Xian-Ping Dong
- a Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
20
|
Li L, Liu L, Qu B, Li X, Gao X, Zhang M. Twinfilin 1 enhances milk bio-synthesis and proliferation of bovine mammary epithelial cells via the mTOR signaling pathway. Biochem Biophys Res Commun 2017; 492:289-294. [DOI: 10.1016/j.bbrc.2017.08.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/28/2017] [Indexed: 01/02/2023]
|
21
|
Zhang M, Chen D, Zhen Z, Ao J, Yuan X, Gao X. Annexin A2 positively regulates milk synthesis and proliferation of bovine mammary epithelial cells through the mTOR signaling pathway. J Cell Physiol 2017; 233:2464-2475. [DOI: 10.1002/jcp.26123] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Minghui Zhang
- The Key Laboratory of Dairy Science of Education Ministry; Northeast Agricultural University; Heilongjiang Province China
| | - Dongying Chen
- The Key Laboratory of Dairy Science of Education Ministry; Northeast Agricultural University; Heilongjiang Province China
| | - Zhen Zhen
- The Key Laboratory of Dairy Science of Education Ministry; Northeast Agricultural University; Heilongjiang Province China
| | - Jinxia Ao
- The Key Laboratory of Dairy Science of Education Ministry; Northeast Agricultural University; Heilongjiang Province China
| | - Xiaohan Yuan
- The Key Laboratory of Dairy Science of Education Ministry; Northeast Agricultural University; Heilongjiang Province China
| | - Xuejun Gao
- The Key Laboratory of Dairy Science of Education Ministry; Northeast Agricultural University; Heilongjiang Province China
| |
Collapse
|
22
|
Takikawa M, Ohki R. A vicious partnership between AKT and PHLDA3 to facilitate neuroendocrine tumors. Cancer Sci 2017; 108:1101-1108. [PMID: 28295876 PMCID: PMC5480075 DOI: 10.1111/cas.13235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 12/19/2022] Open
Abstract
Pancreatic neuroendocrine tumors (PanNET) are rare cancers that generally have a poor prognosis. Accurate diagnosis and proper treatment of these tumors requires a better understanding of the molecular mechanisms underlying the development of PanNET. It has been shown that the mTOR inhibitor everolimus can improve the progression‐free survival of PanNET patients, suggesting that inhibition of the PI3K‐Akt‐mTOR pathway may suppress the progression of PanNET. PHLDA3 is a novel tumor suppressor protein that inhibits Akt activation by competition for binding to PIP3. Our analysis of PanNET revealed frequent loss‐of‐heterozygosity and DNA methylation at the PHLDA3 locus, resulting in strong suppression of PHLDA3 transcription. Such alterations in the PHLDA3 gene were also frequently found in lung neuroendocrine tumors (NET), suggesting the possibility that various types of NET have in common the functional loss of the PHLDA3 gene.
Collapse
Affiliation(s)
- Masahiro Takikawa
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Rieko Ohki
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
23
|
Gopi M, Arambakkam Janardhanam V. Asiaticoside: Attenuation of rotenone induced oxidative burden in a rat model of hemiparkinsonism by maintaining the phosphoinositide-mediated synaptic integrity. Pharmacol Biochem Behav 2017; 155:1-15. [PMID: 28238857 DOI: 10.1016/j.pbb.2017.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
Abstract
Asiaticoside (AS), a triterpenoid saponin isolated from the Indian medicinal herb Centella asiatica is known to exert a neuroprotective effect by attenuating the neurobehavioral, neurochemical and pathological changes in animal models. However, its potential neuroprotection in rotenone-induced hemiparkinsonism which implicates phospholipid-mediated neurotransmission remains unclear. Therefore, we have investigated the neuroprotective effects of AS in rat model of ROT-infused hemiparkinsonism with respect to phosphoinositides-assisted cytodynamics and synaptic function. Adult male Sprague-Dawley rats (250-300g) were distributed randomly into 6 groups, with 6 rats in each group: Sham control, Vehicle control (DMSO-0.1%), ROT-infused group (6μg/μl/kg), AS-treated group (50mg/kg/day), Drug (AS) control and Levodopa (l-DOPA)-treated group (6mg/kg/day). At the end of the experimental period, the rats were sacrificed after performing behavioral analyses and the striatum regions were dissected out. Phosphoinositides (PI) are involved in intrinsic membrane signals that regulate intracellular membrane trafficking vesicle and endocytosis. We have assessed mRNA and protein expressions of genes involved in PI-mediated signaling and also in synaptic function (PI3K, PDK 1, PEBP, Stx 1A and TH) in addition to the levels of neurotransmitters and the enzymatic antioxidant profile. AS caused an improved working memory and motor co-ordination in the ROT group. It alters the levels of neurotransmitters (p<0.01), the expression of mRNA and protein assessed which were significantly affected (P<0.001) by rotenone, thus exhibiting its intervention in the progression of neurodegeneration. We demonstrate that AS can mediate distinct function in PI-assisted vesicle endocytosis, cytoprotective signaling and in the synaptic function thereby mitigating the ROT-infused hemiparkinsonism, however, its specific regulatory role remains to be unraveled.
Collapse
Affiliation(s)
- Margabandhu Gopi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India.
| | | |
Collapse
|
24
|
Lee S, You YA, Kwon EJ, Jung SC, Jo I, Kim YJ. Maternal Food Restriction during Pregnancy and Lactation Adversely Affect Hepatic Growth and Lipid Metabolism in Three-Week-Old Rat Offspring. Int J Mol Sci 2016; 17:ijms17122115. [PMID: 27983688 PMCID: PMC5187915 DOI: 10.3390/ijms17122115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/02/2016] [Accepted: 12/11/2016] [Indexed: 12/14/2022] Open
Abstract
Maternal malnutrition influences the early development of foetal adaptive changes for survival. We explored the effects of maternal undernutrition during gestation and lactation on hepatic growth and function. Sprague-Dawley rats were fed a normal or a food-restricted (FR) diet during gestation and/or lactation. We performed analyses of covariance (adjusting for the liver weight/body weight ratio) to compare hepatic growth and lipid metabolism among the offspring. Maternal FR during gestation triggered the development of wide spaces between hepatic cells and increased the expression of mammalian target of rapamycin (mTOR) in three-week-old male offspring compared with controls (both p < 0.05). Offspring nursed by FR dams exhibited wider spaces between hepatic cells and a lower liver weight/body weight ratio than control offspring, and increased mTOR expression (p < 0.05). Interestingly, the significant decrease in expression of lipogenic-related genes was dependent on carbohydrate-responsive element-binding protein, despite the increased expression of sterol regulatory element-binding protein 1 (SREBP1) (p < 0.05). This study demonstrated increased expression of key metabolic regulators (mTOR and SREBP1), alterations in lipid metabolism, and deficits in hepatic growth in the offspring of FR-treated dams.
Collapse
Affiliation(s)
- Sangmi Lee
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
- Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Young-Ah You
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Eun Jin Kwon
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Sung-Chul Jung
- Department of Biochemistry, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Young Ju Kim
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| |
Collapse
|
25
|
Bengoechea-Alonso MT, Ericsson J. The phosphorylation-dependent regulation of nuclear SREBP1 during mitosis links lipid metabolism and cell growth. Cell Cycle 2016; 15:2753-65. [PMID: 27579997 PMCID: PMC5053579 DOI: 10.1080/15384101.2016.1220456] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/13/2016] [Accepted: 07/31/2016] [Indexed: 01/02/2023] Open
Abstract
The SREBP transcription factors are major regulators of lipid metabolism. Disturbances in lipid metabolism are at the core of several health issues facing modern society, including cardiovascular disease, obesity and diabetes. In addition, the role of lipid metabolism in cancer cell growth is receiving increased attention. Transcriptionally active SREBP molecules are unstable and rapidly degraded in a phosphorylation-dependent manner by Fbw7, a ubiquitin ligase that targets several cell cycle regulatory proteins for degradation. We have previously demonstrated that active SREBP1 is stabilized during mitosis. We have now delineated the mechanisms involved in the stabilization of SREBP1 in mitotic cells. This process is initiated by the phosphorylation of a specific serine residue in nuclear SREBP1 by the mitotic kinase Cdk1. The phosphorylation of this residue creates a docking site for a separate mitotic kinase, Plk1. Plk1 interacts with nuclear SREBP1 in mitotic cells and phosphorylates a number of residues in the C-terminal domain of the protein, including a threonine residue in close proximity of the Fbw7 docking site in SREBP1. The phosphorylation of these residues by Plk1 blocks the interaction between SREBP1 and Fbw7 and attenuates the Fbw7-dependent degradation of nuclear SREBP1 during cell division. Inactivation of SREBP1 results in a mitotic defect, suggesting that SREBP1 could regulate cell division. We propose that the mitotic phosphorylation and stabilization of nuclear SREBP1 during cell division provides a link between lipid metabolism and cell proliferation. Thus, the current study provides additional support for the emerging hypothesis that SREBP-dependent lipid metabolism may be important for cell growth.
Collapse
Affiliation(s)
| | - Johan Ericsson
- University College Dublin, School of Medicine and Medical Science, UCD Conway Institute, Dublin, Ireland
| |
Collapse
|
26
|
Tricin, a methylated cereal flavone, suppresses fat accumulation by downregulating AKT and mTOR in 3T3-L1 preadipocytes. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
27
|
Osorio JS, Lohakare J, Bionaz M. Biosynthesis of milk fat, protein, and lactose: roles of transcriptional and posttranscriptional regulation. Physiol Genomics 2016; 48:231-56. [DOI: 10.1152/physiolgenomics.00016.2015] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The demand for high-quality milk is increasing worldwide. The efficiency of milk synthesis can be improved by taking advantage of the accumulated knowledge of the transcriptional and posttranscriptional regulation of genes coding for proteins involved in the synthesis of fat, protein, and lactose in the mammary gland. Research in this area is relatively new, but data accumulated in the last 10 years provide a relatively clear picture. Milk fat synthesis appears to be regulated, at least in bovines, by an interactive network between SREBP1, PPARγ, and LXRα, with a potential role for other transcription factors, such as Spot14, ChREBP, and Sp1. Milk protein synthesis is highly regulated by insulin, amino acids, and amino acid transporters via transcriptional and posttranscriptional routes, with the insulin-mTOR pathway playing a central role. The transcriptional regulation of lactose synthesis is still poorly understood, but it is clear that glucose transporters play an important role. They can also cooperatively interact with amino acid transporters and the mTOR pathway. Recent data indicate the possibility of nutrigenomic interventions to increase milk fat synthesis by feeding long-chain fatty acids and milk protein synthesis by feeding amino acids. We propose a transcriptional network model to account for all available findings. This model encompasses a complex network of proteins that control milk synthesis with a cross talk between milk fat, protein, and lactose regulation, with mTOR functioning as a central hub.
Collapse
Affiliation(s)
| | - Jayant Lohakare
- Oregon State University, Corvallis, Oregon; and
- Kangwon National University, Chuncheon, South Korea
| | | |
Collapse
|
28
|
Bionaz M, Osorio J, Loor JJ. TRIENNIAL LACTATION SYMPOSIUM: Nutrigenomics in dairy cows: Nutrients, transcription factors, and techniques1,2. J Anim Sci 2015; 93:5531-53. [DOI: 10.2527/jas.2015-9192] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- M. Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97333
| | - J. Osorio
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97333
| | - J. J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
29
|
Jiang N, Wang Y, Yu Z, Hu L, Liu C, Gao X, Zheng S. WISP3 (CCN6) Regulates Milk Protein Synthesis and Cell Growth Through mTOR Signaling in Dairy Cow Mammary Epithelial Cells. DNA Cell Biol 2015; 34:524-33. [DOI: 10.1089/dna.2015.2829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Nan Jiang
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yu Wang
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhiqiang Yu
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Lijun Hu
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chaonan Liu
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xueli Gao
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shimin Zheng
- The Laboratory of Pathophysiology in College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
30
|
Abstract
Acne vulgaris, an epidemic inflammatory skin disease of adolescence, is closely related to Western diet. Three major food classes that promote acne are: 1) hyperglycemic carbohydrates, 2) milk and dairy products, 3) saturated fats including trans-fats and deficient ω-3 polyunsaturated fatty acids (PUFAs). Diet-induced insulin/insulin-like growth factor (IGF-1)-signaling is superimposed on elevated IGF-1 levels during puberty, thereby unmasking the impact of aberrant nutrigenomics on sebaceous gland homeostasis. Western diet provides abundant branched-chain amino acids (BCAAs), glutamine, and palmitic acid. Insulin and IGF-1 suppress the activity of the metabolic transcription factor forkhead box O1 (FoxO1). Insulin, IGF-1, BCAAs, glutamine, and palmitate activate the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the key regulator of anabolism and lipogenesis. FoxO1 is a negative coregulator of androgen receptor, peroxisome proliferator-activated receptor-γ (PPARγ), liver X receptor-α, and sterol response element binding protein-1c (SREBP-1c), crucial transcription factors of sebaceous lipogenesis. mTORC1 stimulates the expression of PPARγ and SREBP-1c, promoting sebum production. SREBP-1c upregulates stearoyl-CoA- and Δ6-desaturase, enhancing the proportion of monounsaturated fatty acids in sebum triglycerides. Diet-mediated aberrations in sebum quantity (hyperseborrhea) and composition (dysseborrhea) promote Propionibacterium acnes overgrowth and biofilm formation with overexpression of the virulence factor triglyceride lipase increasing follicular levels of free palmitate and oleate. Free palmitate functions as a "danger signal," stimulating toll-like receptor-2-mediated inflammasome activation with interleukin-1β release, Th17 differentiation, and interleukin-17-mediated keratinocyte proliferation. Oleate stimulates P. acnes adhesion, keratinocyte proliferation, and comedogenesis via interleukin-1α release. Thus, diet-induced metabolomic alterations promote the visible sebofollicular inflammasomopathy acne vulgaris. Nutrition therapy of acne has to increase FoxO1 and to attenuate mTORC1/SREBP-1c signaling. Patients should balance total calorie uptake and restrict refined carbohydrates, milk, dairy protein supplements, saturated fats, and trans-fats. A paleolithic-like diet enriched in vegetables and fish is recommended. Plant-derived mTORC1 inhibitors and ω-3-PUFAs are promising dietary supplements supporting nutrition therapy of acne vulgaris.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Germany
| |
Collapse
|
31
|
Li S, Oh YT, Yue P, Khuri FR, Sun SY. Inhibition of mTOR complex 2 induces GSK3/FBXW7-dependent degradation of sterol regulatory element-binding protein 1 (SREBP1) and suppresses lipogenesis in cancer cells. Oncogene 2015; 35:642-50. [PMID: 25893295 PMCID: PMC4615269 DOI: 10.1038/onc.2015.123] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/05/2015] [Accepted: 03/20/2015] [Indexed: 01/01/2023]
Abstract
Cancer cells feature increased de novo lipogenesis. Sterol regulatory element-binding protein 1 (SREBP1), when presented in its mature form (mSREBP1), enhances lipogenesis through increasing transcription of several of its target genes. Mammalian target of rapamycin (mTOR) complexes, mTORC1 and mTORC2, are master regulators of cellular survival, growth and metabolism. A role for mTORC1 in the regulation of SREBP1 activity has been suggested; however the connection between mTORC2 and SREBP1 has not been clearly established and hence is the focus of this study. mTOR kinase inhibitors (e.g., INK128), which inhibit both mTORC1 and mTORC2, decreased mSREBP1 levels in various cancer cell lines. Knockdown of rictor, but not raptor, also decreased mSREBP1. Consistently, reduced mSREBP1 levels were detected in cells deficient in rictor or Sin1 compared to parent or rictor-deficient cells with re-expression of ectopic rictor. Hence it is mTORC2 inhibition that causes mSREBP1 reduction. As a result, expression of the mSREBP1 target genes acetyl-CoA carboxylase and fatty acid synthase was suppressed, accompanied with suppressed lipogenesis in cells exposed to INK128. Moreover, mSREBP1 stability was reduced in cells treated with INK128 or rictor knockdown. Inhibition of proteasome, GSK3 or the E3 ubiquitin ligase, FBXW7, prevented mSREBP1 reduction induced by mTORC2 inhibition. Thus mTORC2 inhibition clearly facilitates GSK3-dependent, FBXW7-mediated mSREBP1 degradation, leading to mSREBP1 reduction. Accordingly, we conclude that mTORC2 positively regulates mSREBP1 stability and lipogenesis. Our findings reveal a novel biological function of mTORC2 in the regulation of lipogenesis and warrant further study in this direction.
Collapse
Affiliation(s)
- S Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA.,Department of Biochemistry and Molecular Biology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Y-T Oh
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - P Yue
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - F R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - S-Y Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
32
|
Wu R, Zhang QH, Lu YJ, Ren K, Yi GH. Involvement of the IRE1α-XBP1 pathway and XBP1s-dependent transcriptional reprogramming in metabolic diseases. DNA Cell Biol 2015; 34:6-18. [PMID: 25216212 DOI: 10.1089/dna.2014.2552] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The X-box binding protein 1 (XBP1) is not only an important component of the unfolded protein response (UPR), but also an important nuclear transcription factor. Upon endoplasmic reticulum stress, XBP1 is spliced by inositol-requiring enzyme 1 (IRE1), thereby generating functional spliced XBP1 (XBP1s). XBP1s functions by translocating into the nucleus to initiate transcriptional programs that regulate a subset of UPR- and non-UPR-associated genes involved in the pathophysiological processes of various diseases. Recent reports have implicated XBP1 in metabolic diseases. This review summarizes the effects of XBP1-mediated regulation on lipid metabolism, glucose metabolism, obesity, and atherosclerosis. Additionally, for the first time, we present XBP1s-dependent transcriptional reprogramming in metabolic diseases under different conditions, including pathology and physiology. Understanding the function of XBP1 in metabolic diseases may provide a basic knowledge for the development of novel therapeutic targets for ameliorating these diseases.
Collapse
Affiliation(s)
- Rong Wu
- 1 Key Laboratory for Atherosclerology of Hunan Province, Institute of Cardiovascular Research, University of South China , Hengyang, China
| | | | | | | | | |
Collapse
|
33
|
Tu TH, Kim CS, Nam-Goong IS, Nam CW, Kim YI, Goto T, Kawada T, Park T, Yoon Park JH, Ryoo ZY, Park JW, Choi HS, Yu R. 4-1BBL signaling promotes cell proliferation through reprogramming of glucose metabolism in monocytes/macrophages. FEBS J 2015; 282:1468-80. [DOI: 10.1111/febs.13236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Thai H. Tu
- Department of Food Science and Nutrition; University of Ulsan; South Korea
| | - Chu-Sook Kim
- Department of Food Science and Nutrition; University of Ulsan; South Korea
| | - Il S. Nam-Goong
- Department of Internal Medicine; Ulsan University Hospital; University of Ulsan College of Medicine; South Korea
| | - Chang W. Nam
- Department of Surgery; Ulsan University Hospital; University of Ulsan College of Medicine; South Korea
| | - Young-Il Kim
- Graduate School of Agriculture; Kyoto University; Uji Japan
| | - Tsuyoshi Goto
- Graduate School of Agriculture; Kyoto University; Uji Japan
| | - Teruo Kawada
- Graduate School of Agriculture; Kyoto University; Uji Japan
| | - Taesun Park
- Department of Food and Nutrition; Yonsei University; Seoul South Korea
| | - Jung H. Yoon Park
- Department of Food Science and Nutrition and Research Institute for Bioscience & Biotechnology; Hallym University; Chuncheon South Korea
| | - Zae Y. Ryoo
- School of Life Science and Biotechnology; Kyungpook National University; Daegu South Korea
| | - Jeong W. Park
- Department of Biological Sciences; University of Ulsan; South Korea
| | - Hye-Seon Choi
- Department of Biological Sciences; University of Ulsan; South Korea
| | - Rina Yu
- Department of Food Science and Nutrition; University of Ulsan; South Korea
| |
Collapse
|
34
|
Zhang X, Zhao F, Si Y, Huang Y, Yu C, Luo C, Zhang N, Li Q, Gao X. GSK3β regulates milk synthesis in and proliferation of dairy cow mammary epithelial cells via the mTOR/S6K1 signaling pathway. Molecules 2014; 19:9435-52. [PMID: 24995926 PMCID: PMC6271057 DOI: 10.3390/molecules19079435] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/22/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a serine/threonine kinase, whose activity is inhibited by AKT phosphorylation. This inhibitory phosphorylation of GSK3β can in turn play a regulatory role through phosphorylation of several proteins (such as mTOR, elF2B) to promote protein synthesis. mTOR is a key regulator in protein synthesis and cell proliferation, and recent studies have shown that both GSK3β and mTORC1 can regulate SREBP1 to promote fat synthesis. Thus far, however, the cross talk between GSK3β and the mTOR pathway in the regulation of milk synthesis and associated cell proliferation is not well understood. In this study the interrelationship between GSK3β and the mTOR/S6K1 signaling pathway leading to milk synthesis and proliferation of dairy cow mammary epithelial cells (DCMECs) was analyzed using techniques including GSK3β overexpression by transfection, GSK3β inhibition, mTOR inhibition and methionine stimulation. The analyses revealed that GSK3β represses the mTOR/S6K1 pathway leading to milk synthesis and cell proliferation of DCMECs, whereas GSK3β phosphorylation enhances this pathway. Conversely, the activated mTOR/S6K1 signaling pathway downregulates GSK3β expression but enhances GSK3β phosphorylation to increase milk synthesis and cell proliferation, whereas inhibition of mTOR leads to upregulation of GSK3β and repression of GSK3β phosphorylation, which in turn decreases milk synthesis, and cell proliferation. These findings indicate that GSK3β and phosphorylated GSK3β regulate milk synthesis and proliferation of DCMECs via the mTOR/S6K1 signaling pathway. These findings provide new insight into the mechanisms of milk synthesis.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Feng Zhao
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Yu Si
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Yuling Huang
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Cuiping Yu
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Chaochao Luo
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Na Zhang
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Qingzhang Li
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Xuejun Gao
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
35
|
Stable SREBP-1a knockdown decreases the cell proliferation rate in human preadipocyte cells without inducing senescence. Biochem Biophys Res Commun 2014; 447:51-6. [DOI: 10.1016/j.bbrc.2014.03.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/20/2014] [Indexed: 11/18/2022]
|
36
|
Lettieri Barbato D, Vegliante R, Desideri E, Ciriolo MR. Managing lipid metabolism in proliferating cells: new perspective for metformin usage in cancer therapy. Biochim Biophys Acta Rev Cancer 2014; 1845:317-24. [PMID: 24569230 DOI: 10.1016/j.bbcan.2014.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/18/2014] [Indexed: 01/01/2023]
Abstract
Cancer cells metabolically adapt to undergo cellular proliferation. Lipids, besides their well-known role as energy storage, represent the major building blocks for the synthesis of neo-generated membranes. There is increasing evidence that cancer cells show specific alterations in different aspects of lipid metabolism. The changes of expression and activity of lipid metabolising enzymes are directly regulated by the activity of oncogenic signals. The dependence of tumour cells on the deregulated lipid metabolism suggests that proteins involved in this process could be excellent chemotherapeutic targets for cancer treatment. Due to its rare side effects in non-cancerous cells, metformin has been recently revaluated as a potential anti-tumourigenic drug, which negatively affects lipid biosynthetic pathways. In this review we summarised the emerging molecular events linking the anti-proliferative effect of metformin with lipid metabolism in cancer cells.
Collapse
Affiliation(s)
- Daniele Lettieri Barbato
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Rolando Vegliante
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Enrico Desideri
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Maria Rosa Ciriolo
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; IRCCS San Raffaele, Biochemistry of Ageing, Via di Val Cannuta, 00166 Rome, Italy.
| |
Collapse
|
37
|
|
38
|
Brose SA, Marquardt AL, Golovko MY. Fatty acid biosynthesis from glutamate and glutamine is specifically induced in neuronal cells under hypoxia. J Neurochem 2013; 129:400-12. [PMID: 24266789 DOI: 10.1111/jnc.12617] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/27/2013] [Accepted: 11/14/2013] [Indexed: 12/12/2022]
Abstract
Hypoxia is involved in many neuronal and non-neuronal diseases, and defining the mechanisms for tissue adaptation to hypoxia is critical for the understanding and treatment of these diseases. One mechanism for tissue adaptation to hypoxia is increased glutamine and/or glutamate (Gln/Glu) utilization. To address this mechanism, we determined incorporation of Gln/Glu and other lipogenic substrates into lipids and fatty acids in both primary neurons and a neuronal cell line under normoxic and hypoxic conditions and compared this to non-neuronal primary cells and non-neuronal cell lines. Incorporation of Gln/Glu into total lipids was dramatically and specifically increased under hypoxia in neuronal cells including both primary (2.0- and 3.0-fold for Gln and Glu, respectively) and immortalized cultures (3.5- and 8.0-fold for Gln and Glu, respectively), and 90% to 97% of this increase was accounted for by incorporation into fatty acids (FA) depending upon substrate and cell type. All other non-neuronal cells tested demonstrated decreased or unchanged FA synthesis from Gln/Glu under hypoxia. Consistent with these data, total FA mass was also increased in neuronal cells under hypoxia that was mainly accounted for by the increase in saturated and monounsaturated FA with carbon length from 14 to 24. Incorporation of FA synthesized from Gln/Glu was increased in all major lipid classes including cholesteryl esters, triacylglycerols, diacylglycerols, free FA, and phospholipids, with the highest rate of incorporation into triacylglycerols. These results indicate that increased FA biosynthesis from Gln/Glu followed by esterification may be a neuronal specific pathway for adaptation to hypoxia. We identified a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid biosynthesis from glutamine and glutamate (Gln/Glu) followed by esterification into lipids. All other non-neuronal cells tested demonstrated decreased or unchanged lipid synthesis from Gln/Glu under hypoxia. Incorporation of other lipogenic substrates into lipids was decreased under hypoxia in neuronal cells. We believe that this finding will provide a novel strategy for treatment of oxygen and energy deficient conditions in the neuronal system.
Collapse
Affiliation(s)
- Stephen A Brose
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, Grand Forks, ND, USA
| | | | | |
Collapse
|
39
|
Kim YM, Song I, Seo YH, Yoon G. Glycogen Synthase Kinase 3 Inactivation Induces Cell Senescence through Sterol Regulatory Element Binding Protein 1-Mediated Lipogenesis in Chang Cells. Endocrinol Metab (Seoul) 2013; 28:297-308. [PMID: 24396695 PMCID: PMC3871034 DOI: 10.3803/enm.2013.28.4.297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/14/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Enhanced lipogenesis plays a critical role in cell senescence via induction of expression of the mature form of sterol regulatory element binding protein 1 (SREBP1), which contributes to an increase in organellar mass, one of the indicators of senescence. We investigated the molecular mechanisms by which signaling molecules control SREBP1-mediated lipogenesis and senescence. METHODS We developed cellular models for stress-induced senescence, by exposing Chang cells, which are immortalized human liver cells, to subcytotoxic concentrations (200 µM) of deferoxamine (DFO) and H2O2. RESULTS In this model of stress-induced cell senescence using DFO and H2O2, the phosphorylation profile of glycogen synthase kinase 3α (GSK3α) and β corresponded closely to the expression profile of the mature form of SREBP-1 protein. Inhibition of GSK3 with a subcytotoxic concentration of the selective GSK3 inhibitor SB415286 significantly increased mature SREBP1 expression, as well as lipogenesis and organellar mass. In addition, GSK3 inhibition was sufficient to induce senescence in Chang cells. Suppression of GSK3 expression with siRNAs specific to GSK3α and β also increased mature SREBP1 expression and induced senescence. Finally, blocking lipogenesis with fatty acid synthase inhibitors (cerulenin and C75) and siRNA-mediated silencing of SREBP1 and ATP citrate lyase (ACL) significantly attenuated GSK3 inhibition-induced senescence. CONCLUSION GSK3 inactivation is an important upstream event that induces SREBP1-mediated lipogenesis and consequent cell senescence.
Collapse
Affiliation(s)
- You-Mie Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| | - Insun Song
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| | - Yong-Hak Seo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Science, The Graduate School of Ajou University, Suwon, Korea
| | - Gyesoon Yoon
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Science, The Graduate School of Ajou University, Suwon, Korea
| |
Collapse
|
40
|
Cytosolic functions of MORC2 in lipogenesis and adipogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:316-26. [PMID: 24286864 DOI: 10.1016/j.bbamcr.2013.11.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 11/24/2022]
Abstract
Microrchidia (MORC) family CW-type zinc finger 2 (MORC2) has been shown to be involved in several nuclear processes, including transcription modulation and DNA damage repair. However, its cytosolic function remains largely unknown. Here, we report an interaction between MORC2 and adenosine triphosphate (ATP)-citrate lyase (ACLY), an enzyme that catalyzes the formation of acetyl-coA and plays a central role in lipogenesis, cholesterogenesis, and histone acetylation. Furthermore, we demonstrate that MORC2 promotes ACLY activation in the cytosol of lipogenic breast cancer cells and plays an essential role in lipogenesis, adipogenesis and differentiation of 3T3-L1 preadipocytic cells. Consistently, the expression of MORC2 is induced during the process of 3T3-L1 adipogenic differentiation and mouse mammary gland development at a stage of increased lipogenesis. This observation was accompanied by a high ACLY activity. Together, these results demonstrate a cytosolic function of MORC2 in lipogenesis, adipogenic differentiation, and lipid homeostasis by regulating the activity of ACLY.
Collapse
|
41
|
The complex role of branched chain amino acids in diabetes and cancer. Metabolites 2013; 3:931-45. [PMID: 24958258 PMCID: PMC3937834 DOI: 10.3390/metabo3040931] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/03/2013] [Accepted: 10/08/2013] [Indexed: 02/07/2023] Open
Abstract
The obesity and diabetes epidemics are continuing to spread across the globe. There is increasing evidence that diabetes leads to a significantly higher risk for certain types of cancer. Both diabetes and cancer are characterized by severe metabolic perturbations and the branched chain amino acids (BCAAs) appear to play a significant role in both of these diseases. These essential amino acids participate in a wide variety of metabolic pathways, but it is now recognized that they are also critical regulators of a number of cell signaling pathways. An elevation in branched chain amino acids has recently been shown to be significantly correlated with insulin resistance and the future development of diabetes. In cancer, the normal demands for BCAAs are complicated by the conflicting needs of the tumor and the host. The severe muscle wasting syndrome experience by many cancer patients, known as cachexia, has motivated the use of BCAA supplementation. The desired improvement in muscle mass must be balanced by the need to avoid providing materials for tumor proliferation. A better understanding of the complex functions of BCAAs could lead to their use as biomarkers of the progression of certain cancers in diabetic patients.
Collapse
|
42
|
Danai LV, Guilherme A, Guntur KV, Straubhaar J, Nicoloro SM, Czech MP. Map4k4 suppresses Srebp-1 and adipocyte lipogenesis independent of JNK signaling. J Lipid Res 2013; 54:2697-707. [PMID: 23924694 PMCID: PMC3770083 DOI: 10.1194/jlr.m038802] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/05/2013] [Indexed: 11/20/2022] Open
Abstract
Adipose tissue lipogenesis is paradoxically impaired in human obesity, promoting ectopic triglyceride (TG) deposition, lipotoxicity, and insulin resistance. We previously identified mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4), a sterile 20 protein kinase reported to be upstream of c-Jun NH2-terminal kinase (JNK) signaling, as a novel negative regulator of insulin-stimulated glucose transport in adipocytes. Using full-genome microarray analysis we uncovered a novel role for Map4k4 as a suppressor of lipid synthesis. We further report here the surprising finding that Map4k4 suppresses adipocyte lipogenesis independently of JNK. Thus, while Map4k4 silencing in adipocytes enhances the expression of lipogenic enzymes, concomitant with increased conversion of (14)C-glucose and (14)C-acetate into TGs and fatty acids, JNK1 and JNK2 depletion causes the opposite effects. Furthermore, high expression of Map4k4 fails to activate endogenous JNK, while Map4k4 depletion does not attenuate JNK activation by tumor necrosis factor α. Map4k4 silencing in cultured adipocytes elevates both the total protein expression and cleavage of sterol-regulated element binding protein-1 (Srebp-1) in a rapamycin-sensitive manner, consistent with Map4k4 signaling via mechanistic target of rapamycin complex 1 (mTORC1). We show Map4k4 depletion requires Srebp-1 upregulation to increase lipogenesis and further show that Map4k4 promotes AMP-protein kinase (AMPK) signaling and the phosphorylation of mTORC1 binding partner raptor (Ser792) to inhibit mTORC1. Our results indicate that Map4k4 inhibits adipose lipogenesis by suppression of Srebp-1 in an AMPK- and mTOR-dependent but JNK-independent mechanism.
Collapse
Affiliation(s)
- Laura V. Danai
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - Juerg Straubhaar
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sarah M. Nicoloro
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Michael P. Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
43
|
Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J 2013; 12:103. [PMID: 23883112 PMCID: PMC3725179 DOI: 10.1186/1475-2891-12-103] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/23/2013] [Indexed: 02/07/2023] Open
Abstract
Milk has been recognized to represent a functionally active nutrient system promoting neonatal growth of mammals. Cell growth is regulated by the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1). There is still a lack of information on the mechanisms of mTORC1 up-regulation by milk consumption. This review presents milk as a materno-neonatal relay system functioning by transfer of preferential amino acids, which increase plasma levels of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), insulin, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) for mTORC1 activation. Importantly, milk exosomes, which regularly contain microRNA-21, most likely represent a genetic transfection system enhancing mTORC1-driven metabolic processes. Whereas human breast milk is the ideal food for infants allowing appropriate postnatal growth and species-specific metabolic programming, persistent high milk signaling during adolescence and adulthood by continued cow´s milk consumption may promote mTORC1-driven diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, D-49090, Osnabrück, Germany.
| | | | | |
Collapse
|
44
|
Melnik BC, Zouboulis CC. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne. Exp Dermatol 2013; 22:311-5. [PMID: 23614736 PMCID: PMC3746128 DOI: 10.1111/exd.12142] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 12/13/2022]
Abstract
Acne in adolescents of developed countries is an epidemic skin disease and has currently been linked to the Western diet (WD). It is the intention of this viewpoint to discuss the possible impact of WD-mediated nutrient signalling in the pathogenesis of acne. High glycaemic load and dairy protein consumption both increase insulin/insulin-like growth factor-1 (IGF-1) signalling (IIS) that is superimposed on elevated IGF-1 signalling of puberty. The cell's nutritional status is primarily sensed by the forkhead box transcription factor O1 (FoxO1) and the serine/threonine kinase mammalian target of rapamycin complex 1 (mTORC1). Increased IIS extrudes FoxO1 into the cytoplasm, whereas nuclear FoxO1 suppresses hepatic IGF-1 synthesis and thus impairs somatic growth. FoxO1 attenuates androgen signalling, interacts with regulatory proteins important for sebaceous lipogenesis, regulates the activity of innate and adaptive immunity, antagonizes oxidative stress and most importantly functions as a rheostat of mTORC1, the master regulator of cell growth, proliferation and metabolic homoeostasis. Thus, FoxO1 links nutrient availability to mTORC1-driven processes: increased protein and lipid synthesis, cell proliferation, cell differentiation including hyperproliferation of acroinfundibular keratinocytes, sebaceous gland hyperplasia, increased sebaceous lipogenesis, insulin resistance and increased body mass index. Enhanced androgen, TNF-α and IGF-1 signalling due to genetic polymorphisms promoting the risk of acne all converge in mTORC1 activation, which is further enhanced by nutrient signalling of WD. Deeper insights into the molecular interplay of FoxO1/mTORC1-mediated nutrient signalling are thus of critical importance to understand the impact of WD on the promotion of epidemic acne and more serious mTORC1-driven diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany.
| | | |
Collapse
|
45
|
|
46
|
Abstract
Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population.
Collapse
Affiliation(s)
- Donald B Jump
- Nutrition Program, School of Biological and Population Health Science, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | | | | |
Collapse
|
47
|
Klintmalm G, O'Farrelly C. Taking the rap: multiple effects of blocking mammalian target of rapamycin. Hepatology 2013; 57:1-3. [PMID: 22767219 DOI: 10.1002/hep.25934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 06/15/2012] [Indexed: 02/06/2023]
|
48
|
Jankowska I, Czubkowski P, Socha P, Wierzbicka A, Teisseyre M, Teisseyre J, Pawłowska J. Lipid metabolism and oxidative stress in children after liver transplantation treated with sirolimus. Pediatr Transplant 2012; 16:901-6. [PMID: 23131059 DOI: 10.1111/petr.12007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lipid disturbances are one of the most frequent side effects of SRL; however, clinical consequences are not known. The aim of the study was to evaluate the risk of AS in children after LTx treated with SRL. In 17 children with median age 13.2 yr (1.9-17.9) who received SRL on average for 4.1 yr (s.d. ± 2.9) we measured and compared with age-matched healthy control group (n = 45) lipid parameters and markers of AS: ADMA, oxyLDL, GSH, GPx, TC, TG, HDL cholesterol, LDL cholesterol, VLDL cholesterol, ApoAI, ApoB, ApoE, lipoprotein (a) (Lp(a)). We found no major differences in cholesterol, cholesterol in lipoprotein fractions and TG concentrations between patients receiving SRL and the control group. ApoE was markedly increased in the study group (19.1 g/L [±1.8]) when compared to controls (9.8 [±3.9]). ApoA1 was decreased in the study group: 1.30 g/L (±0.2) vs. 1.45 (±0.25), p = 0.04. ApoB and Lpa concentrations were similar in both groups. There were differences in oxidative stress markers: GSH 743 (±66.2) mol/mL vs. 780 (±48.2), p = 0.02 and GPx 32.8 (±5.5) U/gHb vs. 34.3(±2.6), p = 0.01. Markers of AS: ADMA did not differ between groups and oxidized LDLc was significantly lower in SRL group: 190 mU/mL (±113) vs. 237 (±107) in control, p < 0.05. SRL does not significantly disturb lipid metabolism and oxidative status in children after LTx.
Collapse
Affiliation(s)
- Irena Jankowska
- Department of Gastroenterology, Hepatology and Eating Disorders, The Children's Memorial Health Institute, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The circadian pattern of seizures in people with epilepsy (PWE) was first described two millennia ago. However, these phenomena have not received enough scientific attention, possibly due to the lack of promising hypotheses to address the interaction between seizure generation and a physiological clock. To propose testable hypotheses at the molecular level, interactions between circadian rhythm, especially transcription factors governing clock genes expression, and the mTOR (mammalian target of rapamycin) signaling pathway, the major signaling pathway in epilepsy, will be reviewed. Then, two closely related hypotheses will be proposed: (1) Rhythmic activity of hyperactivated mTOR signaling molecules results in rhythmic increases in neuronal excitability. These rhythmic increases in excitability periodically exceed the seizure threshold, displaying the behavioral seizures. (2) Oscillation of neuronal excitability in SCN modulates the rhythmic excitability in the hippocampus through subiculum via long-range projections. Findings from published results, their implications, and proposals for new experiments will be discussed. These attempts may ignite further discussion on what we still need to learn about the rhythmicity of spontaneous seizures.
Collapse
Affiliation(s)
- Chang-Hoon Cho
- Epilepsy Research Laboratory, Department of Pediatrics, Children's Hospital of Philadelphia Philadelphia, PA, USA
| |
Collapse
|
50
|
Melnik B. Dietary intervention in acne: Attenuation of increased mTORC1 signaling promoted by Western diet. DERMATO-ENDOCRINOLOGY 2012; 4:20-32. [PMID: 22870349 PMCID: PMC3408989 DOI: 10.4161/derm.19828] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of this paper is to highlight the endocrine signaling of Western diet, a fundamental environmental factor involved in the pathogenesis of epidemic acne. Western nutrition is characterized by high calorie uptake, high glycemic load, high fat and meat intake, as well as increased consumption of insulin- and IGF-1-level elevating dairy proteins. Metabolic signals of Western diet are sensed by the nutrient-sensitive kinase, mammalian target of rapamycin complex 1 (mTORC1), which integrates signals of cellular energy, growth factors (insulin, IGF-1) and protein-derived signals, predominantly leucine, provided in high amounts by milk proteins and meat. mTORC1 activates SREBP, the master transcription factor of lipogenesis. Leucine stimulates mTORC1-SREBP signaling and leucine is directly converted by sebocytes into fatty acids and sterols for sebaceous lipid synthesis. Over-activated mTORC1 increases androgen hormone secretion and most likely amplifies androgen-driven mTORC1 signaling of sebaceous follicles. Testosterone directly activates mTORC1. Future research should investigate the effects of isotretinoin on sebocyte mTORC1 activity. It is conceivable that isotretinoin may downregulate mTORC1 in sebocytes by upregulation of nuclear levels of FoxO1. The role of Western diet in acne can only be fully appreciated when all stimulatory inputs for maximal mTORC1 activation, i.e., glucose, insulin, IGF-1 and leucine, are adequately considered. Epidemic acne has to be recognized as an mTORC1-driven disease of civilization like obesity, type 2 diabetes, cancer and neurodegenerative diseases. These new insights into Western diet-mediated mTORC1-hyperactivity provide a rational basis for dietary intervention in acne by attenuating mTORC1 signaling by reducing (1) total energy intake, (2) hyperglycemic carbohydrates, (3) insulinotropic dairy proteins and (4) leucine-rich meat and dairy proteins. The necessary dietary changes are opposed to the evolution of industrialized food and fast food distribution of Westernized countries. An attenuation of mTORC1 signaling is only possible by increasing the consumption of vegetables and fruit, the major components of vegan or Paleolithic diets. The dermatologist bears a tremendous responsibility for his young acne patients who should be advised to modify their dietary habits in order to reduce activating stimuli of mTORC1, not only to improve acne but to prevent the harmful and expensive march to other mTORC1-related chronic diseases later in life.
Collapse
Affiliation(s)
- Bodo Melnik
- Department of Dermatology; Environmental Medicine and Health Theory; University of Osnabrück; Osnabrück, Germany
| |
Collapse
|