1
|
Kladova OA, Tyugashev TE, Miroshnikov AA, Novopashina DS, Kuznetsov NA, Kuznetsova AA. SNP-Associated Substitutions of Amino Acid Residues in the dNTP Selection Subdomain Decrease Polβ Polymerase Activity. Biomolecules 2024; 14:547. [PMID: 38785954 PMCID: PMC11117729 DOI: 10.3390/biom14050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
In the cell, DNA polymerase β (Polβ) is involved in many processes aimed at maintaining genome stability and is considered the main repair DNA polymerase participating in base excision repair (BER). Polβ can fill DNA gaps formed by other DNA repair enzymes. Single-nucleotide polymorphisms (SNPs) in the POLB gene can affect the enzymatic properties of the resulting protein, owing to possible amino acid substitutions. For many SNP-associated Polβ variants, an association with cancer, owing to changes in polymerase activity and fidelity, has been shown. In this work, kinetic analyses and molecular dynamics simulations were used to examine the activity of naturally occurring polymorphic variants G274R, G290C, and R333W. Previously, the amino acid substitutions at these positions have been found in various types of tumors, implying a specific role of Gly-274, Gly-290, and Arg-333 in Polβ functioning. All three polymorphic variants had reduced polymerase activity. Two substitutions-G274R and R333W-led to the almost complete disappearance of gap-filling and primer elongation activities, a decrease in the deoxynucleotide triphosphate-binding ability, and a lower polymerization constant, due to alterations of local contacts near the replaced amino acid residues. Thus, variants G274R, G290C, and R333W may be implicated in an elevated level of unrepaired DNA damage.
Collapse
Affiliation(s)
- Olga A. Kladova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| | - Timofey E. Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| | | | - Daria S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| |
Collapse
|
2
|
The Role of Natural Polymorphic Variants of DNA Polymerase β in DNA Repair. Int J Mol Sci 2022; 23:ijms23042390. [PMID: 35216513 PMCID: PMC8877055 DOI: 10.3390/ijms23042390] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
DNA polymerase β (Polβ) is considered the main repair DNA polymerase involved in the base excision repair (BER) pathway, which plays an important part in the repair of damaged DNA bases usually resulting from alkylation or oxidation. In general, BER involves consecutive actions of DNA glycosylases, AP endonucleases, DNA polymerases, and DNA ligases. It is known that protein-protein interactions of Polβ with enzymes from the BER pathway increase the efficiency of damaged base repair in DNA. However natural single-nucleotide polymorphisms can lead to a substitution of functionally significant amino acid residues and therefore affect the catalytic activity of the enzyme and the accuracy of Polβ action. Up-to-date databases contain information about more than 8000 SNPs in the gene of Polβ. This review summarizes data on the in silico prediction of the effects of Polβ SNPs on DNA repair efficacy; available data on cancers associated with SNPs of Polβ; and experimentally tested variants of Polβ. Analysis of the literature indicates that amino acid substitutions could be important for the maintenance of the native structure of Polβ and contacts with DNA; others affect the catalytic activity of the enzyme or play a part in the precise and correct attachment of the required nucleotide triphosphate. Moreover, the amino acid substitutions in Polβ can disturb interactions with enzymes involved in BER, while the enzymatic activity of the polymorphic variant may not differ significantly from that of the wild-type enzyme. Therefore, investigation regarding the effect of Polβ natural variants occurring in the human population on enzymatic activity and protein-protein interactions is an urgent scientific task.
Collapse
|
3
|
Lilyquist J, Ruddy KJ, Vachon CM, Couch FJ. Common Genetic Variation and Breast Cancer Risk-Past, Present, and Future. Cancer Epidemiol Biomarkers Prev 2018; 27:380-394. [PMID: 29382703 PMCID: PMC5884707 DOI: 10.1158/1055-9965.epi-17-1144] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common cancer among women in the United States, with up to 30% of those diagnosed displaying a family history of breast cancer. To date, 18% of the familial risk of breast cancer can be explained by SNPs. This review summarizes the discovery of risk-associated SNPs using candidate gene and genome-wide association studies (GWAS), including discovery and replication in large collaborative efforts such as The Collaborative Oncologic Gene-environment Study and OncoArray. We discuss the evolution of GWAS studies, efforts to discover additional SNPs, and methods for identifying causal variants. We summarize findings associated with overall breast cancer, pathologic subtypes, and mutation carriers (BRCA1, BRCA2, and CHEK2). In addition, we summarize the development of polygenic risk scores (PRS) using the risk-associated SNPs and show how PRS can contribute to estimation of individual risks for developing breast cancer. Cancer Epidemiol Biomarkers Prev; 27(4); 380-94. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Jenna Lilyquist
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Celine M Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Fergus J Couch
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Ge Y, Wang Y, Shao W, Jin J, Du M, Ma G, Chu H, Wang M, Zhang Z. Rare variants in BRCA2 and CHEK2 are associated with the risk of urinary tract cancers. Sci Rep 2016; 6:33542. [PMID: 27632928 PMCID: PMC5025839 DOI: 10.1038/srep33542] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/30/2016] [Indexed: 01/07/2023] Open
Abstract
Previous studies have shown that two rare variants, rs11571833 in BRCA2 and rs17879961 in CHEK2 were associated with lung cancer. However, the associations between these two variants and urinary tract cancers risk remain largely unexplored. We applied imputation of three genome-wide association studies published in the database of Genotypes and Phenotypes (dbGaP). Unconditional logistic regression analysis and meta-analysis were performed to assess the association between these two variants and the risk of urinary tract cancers. Our results showed that rs11571833[T] had an effect on urinary tract cancers predisposition (ORmeta = 1.45, Pmeta = 0.013), especially associated with increased the risk of bladder cancer (ORmeta = 1.60, Pmeta = 0.010). Moreover, rs17879961[C] had a protective effect on the urinary tract cancers (ORmeta = 0.67, Pmeta = 1.0 × 10(-3)) and was mostly associated with a lower incidence of renal cell carcinoma (ORmeta = 0.51, Pmeta = 2.0 × 10(-3)). Together, our study indicates that BRCA2 and CHEK2 play an important role in the genetic susceptibility to urinary tract cancers.
Collapse
Affiliation(s)
- Yuqiu Ge
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yunyan Wang
- Department of Urology, Huai-An First People's Hospital Affiliated to Nanjing Medical University, Huai-An, China
| | - Wei Shao
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Jin
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Gaoxiang Ma
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Wang Y, Zang W, Du Y, Chen X, Zhao G. The K167I variant of DNA polymerase β that is found in Esophageal Carcinoma patients impairs polymerase activity and BER. Sci Rep 2015; 5:15986. [PMID: 26527528 PMCID: PMC4630582 DOI: 10.1038/srep15986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 10/02/2015] [Indexed: 12/17/2022] Open
Abstract
DNA polymerase β (pol β) is a key enzyme in DNA base excision repair, and an important factor for maintaining genomic integrity and stability. Esophageal carcinoma (EC) patients who have been identified as carrying the K167I variant of pol β have been shown to have decreased life expectancy. However, it is unknown if the variant affects pol β’s functions and/or how it contributes to the initiation and progression of cancer. In this study, we expressed and purified the K167I variant. Moreover, we found that K167I significantly reduced polymerase activity. As a result, the K167I substitution reduced base excision repair (BER) efficiency when assayed in a reconstitution assay or when using cellular extracts. Finally, we observed EC cells expressing the K167I variant to be sensitive to DNA damaging agents. These results suggest the K167I variant affected pol β biochemical activity resulting in impaired BER function, which might subsequently contribute to genomic instability and cancer development.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenqiao Zang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuwen Du
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaonan Chen
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guoqiang Zhao
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
CHEK2*1100delC homozygosity in the Netherlands--prevalence and risk of breast and lung cancer. Eur J Hum Genet 2013; 22:46-51. [PMID: 23652375 DOI: 10.1038/ejhg.2013.85] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 03/30/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022] Open
Abstract
The 1100delC mutation in the CHEK2 gene has a carrier frequency of up to 1.5% in individuals from North-West Europe. Women heterozygous for 1100delC have an increased breast cancer risk (odds ratio 2.7). To explore the prevalence and clinical consequences of 1100delC homozygosity in the Netherlands, we genotyped a sporadic breast cancer hospital-based cohort, a group of non-BRCA1/2 breast cancer families, and breast tumors from a tumor tissue bank. Three 1100delC homozygous patients were found in the cohort of 1434 sporadic breast cancer patients, suggesting an increased breast cancer risk for 1100delC homozygotes (odds ratio 3.4, 95% confidence interval 0.4-32.6, P=0.3). Another 1100delC homozygote was found in 592 individuals from 108 non-BRCA1/2 breast cancer families, and two more were found after testing 1706 breast tumors and confirming homozygosity on their wild-type DNA. Follow-up data was available for five homozygous patients, and remarkably, three of them had developed contralateral breast cancer. A possible relationship between 1100delC and lung cancer risk was investigated in 457 unrelated lung cancer patients but could not be confirmed. Due to the small number of 1100delC homozygotes identified, the breast cancer risk estimate associated with this genotype had limited accuracy but is probably higher than the risk in heterozygous females. Screening for CHEK2 1100delC could be beneficial in countries with a relatively high allele frequency.
Collapse
|
7
|
Naccarati A, Pardini B, Stefano L, Landi D, Slyskova J, Novotny J, Levy M, Polakova V, Lipska L, Vodicka P. Polymorphisms in miRNA-binding sites of nucleotide excision repair genes and colorectal cancer risk. Carcinogenesis 2012; 33:1346-51. [PMID: 22581836 DOI: 10.1093/carcin/bgs172] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reduced DNA repair capacity and DNA damage accumulation may lead to cancer development. Regulation of and coordination between genes involved in DNA repair pathways is fundamental for maintaining genome stability, and post-transcriptional gene regulation by microRNAs (miRNAs) may therefore be of particular relevance. In this context, the presence of single nucleotide polymorphisms (SNPs) within the 3'untranslated regions of target DNA repair genes could alter the binding with specific miRNAs, modulating gene expression and ultimately affecting cancer susceptibility. In this study, we investigated the role of genetic variations in miRNA-binding sites of nucleotide excision repair (NER) genes in association with colorectal cancer (CRC) risk. From 28 NER genes, we screened among SNPs residing in their 3'untranslated regions and simultaneously located in miRNA-binding sites, with an in silico approach. Through the calculation of different binding free energy according to both alleles of identified SNPs, and with global binding free energies median providing a threshold, we selected nine NER gene variants. We tested those SNPs in 1098 colorectal cancer cases and 1469 healthy controls from the Czech Republic. Rs7356 in RPA2 and rs4596 in GTF2H1 were associated with colorectal cancer risk. After stratification for tumor location, the association of both SNPs was significant only for rectal cancer (rs7356: OR 1.52, 95% CI 1.02-2.26, P = 0.04 and rs4596: OR 0.69, 95% CI 0.50-0.94, P = 0.02; results not adjusted for multiple testing). Variation in miRNA target binding sites in the 3'untranslated region of NER genes may be important for modulating colorectal cancer risk, with a different relevance according to tumor location.
Collapse
Affiliation(s)
- Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Upon the tightrope in prostate cancer: two acrobats on the same tightrope to cross the finishline. Mol Cell Biochem 2011; 364:53-7. [PMID: 22200977 DOI: 10.1007/s11010-011-1204-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/15/2011] [Indexed: 01/03/2023]
Abstract
Prostate cancer is a multifactorial, multistep progressive disorder that is undruggable to date because of stumbling blocks in the standardization of therapy. It is triggered by a broad range of proteins, signaling networks and DNA damage response modulators. It is becoming increasingly apparent that DNA repair mediators have split personalities, as they are instrumental in suppressing and promoting carcinogenesis. In this article, we discuss on post-transcriptional processing of regulators of DNA damage response, and how DNA repair proteins trigger shuttling of androgen receptor. Substantial fraction of information has been added into the existing literature of ATM biology; however, the particular area of post-transcriptional processing errors and gene therapy for reprogramming of ATM has been left unaddressed in prostate cancer. It is therefore noteworthy that the facet of targeting strategy, antisense morpholino oligonucleotides chemistry, and systematic delivery of AOs has promising outlook in splice-targeted antisense-mediated therapy.
Collapse
|
9
|
Duman N, Aktan M, Ozturk S, Palanduz S, Cakiris A, Ustek D, Ozbek U, Nalcaci M, Cefle K. Investigation of Arg399Gln and Arg194Trp polymorphisms of the XRCC1 (x-ray cross-complementing group 1) gene and its correlation to sister chromatid exchange frequency in patients with chronic lymphocytic leukemia. Genet Test Mol Biomarkers 2011; 16:287-91. [PMID: 22106831 DOI: 10.1089/gtmb.2011.0152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Polymorphisms of the x-ray repair cross-complementing group 1 (XRCC1) gene have been reported to be associated with various forms of cancer. We evaluated the possible effects of the Arg194Trp and the Arg399Gln polymorphisms on the risk for chronic lymphocytic leukemia (CLL) in 73 patients and 50 controls. We also analyzed their relation to frequency of sister chromatid exchange (SCE). With respect to codon 194, the allelic frequency of the Arg194Trp polymorphism did not significantly differ between the 2 groups. The proportion of individuals carrying the Arg194Trp polymorphism was not different in the 2 groups. With respect to codon 399, the proportion of the individuals carrying the Arg399Gln allele (90% vs 62%; p=0.000; odds ratio [OR], 5.779; 95% confidence interval [CI], 2.2-15.183) and the allelic frequency of the Arg399Gln polymorphism (56% vs 36%; p=0.002; OR, 2.278; 95% CI, 1.350-3.843) was significantly higher in the patient group. The frequency of the Arg/Gln genotype was significantly higher in the patient group (68.50% vs 52%; p=0.049; OR, 2.007; 95% CI, 0.955-4.217). The mean SCE frequency in the patient group was significantly higher (9.2±4 vs 7.5±2; p=0.02). When different compound genotypes were compared, the coexistence of Arg/Arg genotype in codon 194 with Arg/Arg genotype in codon 399 was significantly more frequent in the control group (30% vs 9%; p=0.004; OR, 0.247; 95% CI, 0.092-0.664). Within the patient group, SCE frequency did not differ between patients with various genotypes. The Arg399Gln polymorphism may be etiologically associated with CLL; however, it does not seem to increase SCE frequency.
Collapse
Affiliation(s)
- Nilgün Duman
- Department of Internal Medicine, Division of Medical Genetics, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Monroy CM, Cortes AC, Lopez M, Rourke E, Etzel CJ, Younes A, Strom SS, El-Zein R. Hodgkin lymphoma risk: role of genetic polymorphisms and gene-gene interactions in DNA repair pathways. Mol Carcinog 2011; 50:825-34. [PMID: 21374732 PMCID: PMC3131460 DOI: 10.1002/mc.20747] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 01/14/2011] [Accepted: 01/16/2011] [Indexed: 01/09/2023]
Abstract
DNA repair variants may play a potentially important role in an individual's susceptibility to developing cancer. Numerous studies have reported the association between genetic single nucleotide polymorphisms (SNPs) in DNA repair genes and different types of hematologic cancers. However, to date, the effects of such SNPs on modulating Hodgkin lymphoma (HL) risk have not yet been investigated. We hypothesized that gene-gene interaction between candidate genes in direct reversal, nucleotide excision repair (NER), base excision repair (BER) and double strand break (DSB) pathways may contribute to susceptibility to HL. To test this hypothesis, we conducted a study on 200 HL cases and 220 controls to assess associations between HL risk and 21 functional SNPs in DNA repair genes. We evaluated potential gene-gene interactions and the association of multiple polymorphisms in a chromosome region using a multi-analytic strategy combining logistic regression, multi-factor dimensionality reduction and classification and regression tree approaches. We observed that, in combination, allelic variants in the XPC Ala499Val, NBN Glu185Gln, XRCC3 Thr241Me, XRCC1 Arg194Trp, and XRCC1 399Gln polymorphisms modify the risk for developing HL. Moreover, the cumulative genetic risk score revealed a significant trend where the risk for developing HL increases as the number of adverse alleles in BER and DSB genes increase. These findings suggest that DNA repair variants in BER and DSB pathways may play an important role in the development of HL.
Collapse
Affiliation(s)
- Claudia M. Monroy
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center
| | - Andrea C. Cortes
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center
| | - Mirtha Lopez
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center
| | - Elizabeth Rourke
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center
| | - Carol J. Etzel
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center
| | - Anas Younes
- Department of Lymphoma/Myeloma, The University of Texas M. D. Anderson Cancer Center
| | - Sara S. Strom
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center
| | - Randa El-Zein
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center
| |
Collapse
|
11
|
Emami S. Interplay between p53-family, their regulators, and PARPs in DNA repair. Clin Res Hepatol Gastroenterol 2011; 35:98-104. [PMID: 21177056 DOI: 10.1016/j.gcb.2010.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/28/2010] [Accepted: 10/04/2010] [Indexed: 02/07/2023]
Abstract
Abnormalities of the p53 tumor suppressor gene are among the most frequent molecular events in human neoplasia. p53 is consequently one of the most studied proteins, and is the subject of over 55,500 scientific papers. In this review, attention is focused on the functions of p53 in DNA repair. We highlight the recent progress in the analysis of protein signals to p53, including PARPs, and ubiquitination cascade proteins MDM2, CRM1, USP10 and 14-3-3σ.
Collapse
Affiliation(s)
- S Emami
- Inserm UMR S938, centre de recherche Saint-Antoine, université Pierre-et-Marie-Curie (université Paris-6), 184, rue du faubourg-Saint-Antoine, 75571 Paris cedex 12, France.
| |
Collapse
|
12
|
Regulation of cell cycle and DNA repair in post-mitotic GABA neurons in psychotic disorders. Neuropharmacology 2010; 60:1232-42. [PMID: 21184762 DOI: 10.1016/j.neuropharm.2010.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/24/2010] [Accepted: 12/15/2010] [Indexed: 11/24/2022]
Abstract
Disturbances of cell cycle regulation and DNA repair in post-mitotic neurons have been implicated in degenerative and malignant diseases of the human brain. Recent work is now suggesting that abnormal regulation of these functions in GABA cells of the adult hippocampus may also play a role in two neuropsychiatric disorders. In schizophrenia and bipolar disorder, a network of genes involved in the regulation of GAD₆₇, a marker for the functional differentiation of GABA cells, show pronounced changes in expression and include kainate receptor subunits, TGFβ and Wnt signaling pathways, epigenetic factors and transcription factors. One of these genes, cyclin D2, is involved in the regulation of cell cycle and DNA repair and appears to be a pivotal element in linking GAD₆₇ expression with these functional clusters of genes. Dysfunction of post-mitotic GABAergic neurons in the adult hippocampus of patients with psychotic disorders is associated with changes in the expression of genes that are involved in the maintenance of functional and genomic integrity of GABA cells. The nature of these changes is quite different in schizophrenia and bipolar disorder, suggesting that a common cell phenotype (in this case, decreased GAD₆₇ expression) may involve two fundamentally different molecular endophenotypes and reflect unique susceptibility genes involved in the respective disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
|
13
|
Abstract
In order to maintain genome integrity, it is essential that any DNA damage is repaired. This is achieved in diverse ways in all cells to ensure cellular survival. There is a large repertoire of proteins that remove and repair DNA damage. However, sometimes these processes do not function correctly, leading to genome instability. Studies of DNA repair and genome instability and their causes and cures were showcased in the 2008 Biochemical Society Annual Symposium. The present article provides a summary of the talks given and the subsequent papers in this issue of Biochemical Society Transactions.
Collapse
|