1
|
Singha T, Polley A, Barma M. Clustering of lipids driven by integrin. SOFT MATTER 2023; 19:6814-6824. [PMID: 37654180 DOI: 10.1039/d3sm00809f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Integrin is an important transmembrane receptor protein which remodels the actin network and anchors the cell membrane towards the extracellular matrix via mechanochemical pathways. The clustering of specific lipids and lipid-anchored proteins, which is essential for a certain type of endocytosis process, is facilitated at integrin-mediated active regions. To study this, we propose a minimal exactly solvable model which includes the interplay of stochastic shuttling between integrin on and off states with the intrinsic dynamics of the membrane. We propose a two-step mechanism in which the integrin induces an aster-like arrangement in the actin network, followed by clustering of lipids in that region. We obtain an analytic expression for the deformation and local membrane velocity, and thereby the evolution of clustering mediated by a single integrin. The deformation evolves nonmonotonically and its dependence on the stochastic shuttling timescales and membrane properties is elucidated. Our estimates of the area of the deformed region and the number of lipids in it indicate strong clustering.
Collapse
Affiliation(s)
- Tapas Singha
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Anirban Polley
- Shanmugha Arts, Science, Technology and Research Academy, Tirumalaisamudram, Thanjavur, Tamilnadu 613401, India
- National Centre for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Mustansir Barma
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500107, India
| |
Collapse
|
2
|
Lemaigre C, Ceuppens A, Valades-Cruz CA, Ledoux B, Vanbeneden B, Hassan M, Zetterberg FR, Nilsson UJ, Johannes L, Wunder C, Renard HF, Morsomme P. N-BAR and F-BAR proteins-endophilin-A3 and PSTPIP1-control clathrin-independent endocytosis of L1CAM. Traffic 2023; 24:190-212. [PMID: 36843549 DOI: 10.1111/tra.12883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
Recent advances in the field demonstrate the high diversity and complexity of endocytic pathways. In the current study, we focus on the endocytosis of L1CAM. This glycoprotein plays a major role in the development of the nervous system, and is involved in cancer development and is associated with metastases and poor prognosis. Two L1CAM isoforms are subject to endocytosis: isoform 1, described as a clathrin-mediated cargo; isoform 2, whose endocytosis has never been studied. Deciphering the molecular machinery of isoform 2 internalisation should contribute to a better understanding of its pathophysiological role. First, we demonstrated in our cellular context that both isoforms of L1CAM are mainly a clathrin-independent cargo, which was not expected for isoform 1. Second, the mechanism of L1CAM endocytosis is specifically mediated by the N-BAR domain protein endophilin-A3. Third, we discovered PSTPIP1, an F-BAR domain protein, as a novel actor in this endocytic process. Finally, we identified galectins as endocytic partners and negative regulators of L1CAM endocytosis. In summary, the interplay of the BAR proteins endophilin-A3 and PSTPIP1, and galectins fine tune the clathrin-independent endocytosis of L1CAM.
Collapse
Affiliation(s)
- Camille Lemaigre
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | - Apolline Ceuppens
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | - Cesar Augusto Valades-Cruz
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France.,SERPICO Project Team, UMR144 CNRS Institut Curie, PSL Research University, Paris, France.,SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Campus Universitaire de Beaulieu, Rennes, France
| | - Benjamin Ledoux
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | - Bastien Vanbeneden
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | | | | | - Ulf J Nilsson
- Department of Chemistry, Lund University, Lund, Sweden
| | - Ludger Johannes
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France
| | - Christian Wunder
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France
| | - Henri-François Renard
- UNamur, NARILIS, Unité de recherche en biologie cellulaire animale (URBC), Namur, Belgium
| | - Pierre Morsomme
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Mallik B, Bhat S, Kumar V. Role of Bin‐Amphiphysin‐Rvs (BAR) domain proteins in mediating neuronal signaling and disease. Synapse 2022; 76:e22248. [DOI: 10.1002/syn.22248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Bhagaban Mallik
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| | - Sajad Bhat
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| | - Vimlesh Kumar
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| |
Collapse
|
4
|
The role of GTPase-activating protein ARHGAP26 in human cancers. Mol Cell Biochem 2021; 477:319-326. [PMID: 34716859 PMCID: PMC8755663 DOI: 10.1007/s11010-021-04274-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Rho GTPases are molecular switches that play an important role in regulating the behavior of a variety of tumor cells. RhoA GTPase-activating protein 26 (ARHGAP26) is a GTPase-activating protein and inhibits the activity of Rho GTPases by promoting the hydrolytic ability of Rho GTPases. It also affects tumorigenesis and progression of various tumors through several methods, including formation of abnormal fusion genes and circular RNA. This review summarizes the biological functions and molecular mechanisms of ARHGAP26 in different tumors, proposes the potential clinical value of ARHGAP26 in cancer treatment, and discusses current issues that need to be addressed.
Collapse
|
5
|
Hammood M, Craig AW, Leyton JV. Impact of Endocytosis Mechanisms for the Receptors Targeted by the Currently Approved Antibody-Drug Conjugates (ADCs)-A Necessity for Future ADC Research and Development. Pharmaceuticals (Basel) 2021; 14:ph14070674. [PMID: 34358100 PMCID: PMC8308841 DOI: 10.3390/ph14070674] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Biologically-based therapies increasingly rely on the endocytic cycle of internalization and exocytosis of target receptors for cancer therapies. However, receptor trafficking pathways (endosomal sorting (recycling, lysosome localization) and lateral membrane movement) are often dysfunctional in cancer. Antibody-drug conjugates (ADCs) have revitalized the concept of targeted chemotherapy by coupling inhibitory antibodies to cytotoxic payloads. Significant advances in ADC technology and format, and target biology have hastened the FDA approval of nine ADCs (four since 2019). Although the links between aberrant endocytic machinery and cancer are emerging, the impact of dysregulated internalization processes of ADC targets and response rates or resistance have not been well studied. This is despite the reliance on ADC uptake and trafficking to lysosomes for linker cleavage and payload release. In this review, we describe what is known about all the target antigens for the currently approved ADCs. Specifically, internalization efficiency and relevant intracellular sorting activities are described for each receptor under normal processes, and when complexed to an ADC. In addition, we discuss aberrant endocytic processes that have been directly linked to preclinical ADC resistance mechanisms. The implications of endocytosis in regard to therapeutic effectiveness in the clinic are also described. Unexpectedly, information on endocytosis is scarce (absent for two receptors). Moreover, much of what is known about endocytosis is not in the context of receptor-ADC/antibody complexes. This review provides a deeper understanding of the pertinent principles of receptor endocytosis for the currently approved ADCs.
Collapse
Affiliation(s)
- Manar Hammood
- Departément de Medécine Nucléaire et Radiobiologie, Faculté de Medécine et des Sciences de la Santé, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Andrew W. Craig
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Jeffrey V. Leyton
- Departément de Medécine Nucléaire et Radiobiologie, Faculté de Medécine et des Sciences de la Santé, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Centre d’Imagerie Moleculaire, Centre de Recherche, CHUS, Sherbrooke, QC J1H 5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110
| |
Collapse
|
6
|
Åberg C. Kinetics of nanoparticle uptake into and distribution in human cells. NANOSCALE ADVANCES 2021; 3:2196-2212. [PMID: 36133761 PMCID: PMC9416924 DOI: 10.1039/d0na00716a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/12/2021] [Indexed: 05/17/2023]
Abstract
Whether one wishes to optimise drug delivery using nano-sized carriers or avoid hazard posed by engineered nanomaterials, the kinetics of nanoparticle uptake into human cells and their subsequent intracellular distribution is key. Unique properties of the nanoscale implies that such nanoparticles are taken up and trafficked in a different fashion compared to molecular species. In this review, we discuss in detail how to describe the kinetics of nanoparticle uptake and intracellular distribution, using previous studies for illustration. We also cover the extracellular kinetics, particle degradation, endosomal escape and cell division, ending with an outlook on the future of kinetic studies.
Collapse
Affiliation(s)
- Christoffer Åberg
- Groningen Research Institute of Pharmacy, University of Groningen Antonius Deusinglaan 1 9713AV Groningen The Netherlands
| |
Collapse
|
7
|
Sharma S, Rikhy R. Spatiotemporal recruitment of RhoGTPase protein GRAF inhibits actomyosin ring constriction in Drosophila cellularization. eLife 2021; 10:63535. [PMID: 33835025 PMCID: PMC8081525 DOI: 10.7554/elife.63535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/31/2021] [Indexed: 11/18/2022] Open
Abstract
Actomyosin contractility is regulated by Rho-GTP in cell migration, cytokinesis and morphogenesis in embryo development. Whereas Rho activation by Rho-GTP exchange factor (GEF), RhoGEF2, is well known in actomyosin contractility during cytokinesis at the base of invaginating membranes in Drosophila cellularization, Rho inhibition by RhoGTPase-activating proteins (GAPs) remains to be studied. We have found that the RhoGAP, GRAF, inhibits actomyosin contractility during cellularization. GRAF is enriched at the cleavage furrow tip during actomyosin assembly and initiation of ring constriction. Graf depletion shows increased Rho-GTP, increased Myosin II and ring hyper constriction dependent upon the loss of the RhoGTPase domain. GRAF and RhoGEF2 are present in a balance for appropriate activation of actomyosin ring constriction. RhoGEF2 depletion and abrogation of Myosin II activation in Rho kinase mutants suppress the Graf hyper constriction defect. Therefore, GRAF recruitment restricts Rho-GTP levels in a spatiotemporal manner for inhibiting actomyosin contractility during cellularization.
Collapse
Affiliation(s)
- Swati Sharma
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
8
|
Redpath GMI, Betzler VM, Rossatti P, Rossy J. Membrane Heterogeneity Controls Cellular Endocytic Trafficking. Front Cell Dev Biol 2020; 8:757. [PMID: 32850860 PMCID: PMC7419583 DOI: 10.3389/fcell.2020.00757] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Endocytic trafficking relies on highly localized events in cell membranes. Endocytosis involves the gathering of protein (cargo/receptor) at distinct plasma membrane locations defined by specific lipid and protein compositions. Simultaneously, the molecular machinery that drives invagination and eventually scission of the endocytic vesicle assembles at the very same place on the inner leaflet of the membrane. It is membrane heterogeneity - the existence of specific lipid and protein domains in localized regions of membranes - that creates the distinct molecular identity required for an endocytic event to occur precisely when and where it is required rather than at some random location within the plasma membrane. Accumulating evidence leads us to believe that the trafficking fate of internalized proteins is sealed following endocytosis, as this distinct membrane identity is preserved through the endocytic pathway, upon fusion of endocytic vesicles with early and sorting endosomes. In fact, just like at the plasma membrane, multiple domains coexist at the surface of these endosomes, regulating local membrane tubulation, fission and sorting to recycling pathways or to the trans-Golgi network via late endosomes. From here, membrane heterogeneity ensures that fusion events between intracellular vesicles and larger compartments are spatially regulated to promote the transport of cargoes to their intracellular destination.
Collapse
Affiliation(s)
- Gregory M I Redpath
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,The ANZAC Research Institute, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Verena M Betzler
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Pascal Rossatti
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Jérémie Rossy
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
9
|
Endophilin-A3 and Galectin-8 control the clathrin-independent endocytosis of CD166. Nat Commun 2020; 11:1457. [PMID: 32193381 PMCID: PMC7081352 DOI: 10.1038/s41467-020-15303-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/03/2020] [Indexed: 12/31/2022] Open
Abstract
While several clathrin-independent endocytic processes have been described so far, their biological relevance often remains elusive, especially in pathophysiological contexts such as cancer. In this study, we find that the tumor marker CD166/ALCAM (Activated Leukocyte Cell Adhesion Molecule) is a clathrin-independent cargo. We show that endophilin-A3—but neither A1 nor A2 isoforms—functionally associates with CD166-containing early endocytic carriers and physically interacts with the cargo. Our data further demonstrates that the three endophilin-A isoforms control the uptake of distinct subsets of cargoes. In addition, we provide strong evidence that the construction of endocytic sites from which CD166 is taken up in an endophilin-A3-dependent manner is driven by extracellular galectin-8. Taken together, our data reveal the existence of a previously uncharacterized clathrin-independent endocytic modality, that modulates the abundance of CD166 at the cell surface, and regulates adhesive and migratory properties of cancer cells. How and which cell surface molecules are taken up by clathrin-independent endocytosis is an ongoing area of research. Here, the authors show that the tumor marker CD166 is a clathrin-independent cargo that is taken up by endophilin-A3 and galectin-8, which regulates cancer cell migration.
Collapse
|
10
|
Rossatti P, Ziegler L, Schregle R, Betzler VM, Ecker M, Rossy J. Cdc42 Couples T Cell Receptor Endocytosis to GRAF1-Mediated Tubular Invaginations of the Plasma Membrane. Cells 2019; 8:cells8111388. [PMID: 31690048 PMCID: PMC6912536 DOI: 10.3390/cells8111388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
: T cell activation is immediately followed by internalization of the T cell receptor (TCR). TCR endocytosis is required for T cell activation, but the mechanisms supporting removal of TCR from the cell surface remain incompletely understood. Here we report that TCR endocytosis is linked to the clathrin-independent carrier (CLIC) and GPI-enriched endocytic compartments (GEEC) endocytic pathway. We show that unlike the canonical clathrin cargo transferrin or the adaptor protein Lat, internalized TCR accumulates in tubules shaped by the small GTPase Cdc42 and the Bin/amphiphysin/Rvs (BAR) domain containing protein GRAF1 in T cells. Preventing GRAF1-positive tubules to mature into endocytic vesicles by expressing a constitutively active Cdc42 impairs the endocytosis of TCR, while having no consequence on the uptake of transferrin. Together, our data reveal a link between TCR internalization and the CLIC/GEEC endocytic route supported by Cdc42 and GRAF1.
Collapse
Affiliation(s)
- Pascal Rossatti
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland.
| | - Luca Ziegler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland.
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | - Richard Schregle
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland.
| | - Verena M Betzler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland.
| | - Manuela Ecker
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia.
| | - Jérémie Rossy
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland.
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
11
|
Clathrin-Independent Endocytosis Suppresses Cancer Cell Blebbing and Invasion. Cell Rep 2017; 20:1893-1905. [DOI: 10.1016/j.celrep.2017.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 06/15/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023] Open
|
12
|
Bendris N, Schmid SL. Endocytosis, Metastasis and Beyond: Multiple Facets of SNX9. Trends Cell Biol 2016; 27:189-200. [PMID: 27989654 DOI: 10.1016/j.tcb.2016.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 11/26/2022]
Abstract
Sorting nexin (SNX)9 was first discovered as an endocytic accessory protein involved in clathrin-mediated endocytosis. However, recent data suggest that SNX9 is a multifunctional scaffold that coordinates membrane trafficking and remodeling with changes in actin dynamics to affect diverse cellular processes. Here, we review the accumulated knowledge on SNX9 with an emphasis on its recently identified roles in clathrin-independent endocytic pathways, cell invasion, and cell division, which have implications for SNX9 function in human disease, including cancer.
Collapse
Affiliation(s)
- Nawal Bendris
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Sandra L Schmid
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Guo Z, Li S, Wang C, Xu J, Kirk B, Wu J, Liu Z, Xue W. Biocompatibility and cellular uptake mechanisms of poly(N-isopropylacrylamide) in different cells. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516648969] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thermosensitive poly( N-isopropylacrylamide) is widely used in various biomedical applications including drug delivery systems, gene delivery systems, switching devices, sensors, and diagnostic assays. To promote these clinical applications, it is essential to have a comprehensive understanding of the biosafety of poly( N-isopropylacrylamide) and the interaction of poly( N-isopropylacrylamide) with different cell lines, which has little research until now. In this work, we evaluated the biocompatibility of poly( N-isopropylacrylamide) including cell viability, nitric oxide production, and apoptosis of macrophages RAW264.7, human bronchial epithelial cells, A549, and human umbilical vein endothelial cells in the presence of poly( N-isopropylacrylamide). We have also examined the cellular uptake mechanisms of poly( N-isopropylacrylamide) using endocytic inhibitors and insighted into the intracellular co-localization of poly( N-isopropylacrylamide) using confocal laser scanning microscope. The results showed that poly( N-isopropylacrylamide) had good biocompatibility and could be internalized by these cells. It is macropinocytosis that poly( N-isopropylacrylamide) could be internalized in RAW264.7 cells and caveolae-mediated endocytosis in human bronchial epithelial cells, A549, and human umbilical vein endothelial cells. In addition, we also evidenced that intracellular poly( N-isopropylacrylamide) was co-localized with lysosome. The study provided important information for the development and clinical applications of poly( N-isopropylacrylamide) in the biomedical field.
Collapse
Affiliation(s)
- Zhong Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Sha Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Changyong Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Brett Kirk
- Department of Mechanical Engineering, Curtin University, Bentley, WA, Australia
| | - Jianping Wu
- Department of Mechanical Engineering, Curtin University, Bentley, WA, Australia
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Jarius S, Wildemann B. 'Medusa head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 2: Anti-PKC-gamma, anti-GluR-delta2, anti-Ca/ARHGAP26 and anti-VGCC. J Neuroinflammation 2015; 12:167. [PMID: 26377184 PMCID: PMC4574118 DOI: 10.1186/s12974-015-0357-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/02/2015] [Indexed: 01/18/2023] Open
Abstract
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa head antibodies' due their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects, and provides a summary and outlook.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Yao F, Kausalya JP, Sia YY, Teo ASM, Lee WH, Ong AGM, Zhang Z, Tan JHJ, Li G, Bertrand D, Liu X, Poh HM, Guan P, Zhu F, Pathiraja TN, Ariyaratne PN, Rao J, Woo XY, Cai S, Mulawadi FH, Poh WT, Veeravalli L, Chan CS, Lim SS, Leong ST, Neo SC, Choi PSD, Chew EGY, Nagarajan N, Jacques PÉ, So JBY, Ruan X, Yeoh KG, Tan P, Sung WK, Hunziker W, Ruan Y, Hillmer AM. Recurrent Fusion Genes in Gastric Cancer: CLDN18-ARHGAP26 Induces Loss of Epithelial Integrity. Cell Rep 2015; 12:272-85. [PMID: 26146084 DOI: 10.1016/j.celrep.2015.06.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 04/21/2015] [Accepted: 06/06/2015] [Indexed: 12/21/2022] Open
Abstract
Genome rearrangements, a hallmark of cancer, can result in gene fusions with oncogenic properties. Using DNA paired-end-tag (DNA-PET) whole-genome sequencing, we analyzed 15 gastric cancers (GCs) from Southeast Asians. Rearrangements were enriched in open chromatin and shaped by chromatin structure. We identified seven rearrangement hot spots and 136 gene fusions. In three out of 100 GC cases, we found recurrent fusions between CLDN18, a tight junction gene, and ARHGAP26, a gene encoding a RHOA inhibitor. Epithelial cell lines expressing CLDN18-ARHGAP26 displayed a dramatic loss of epithelial phenotype and long protrusions indicative of epithelial-mesenchymal transition (EMT). Fusion-positive cell lines showed impaired barrier properties, reduced cell-cell and cell-extracellular matrix adhesion, retarded wound healing, and inhibition of RHOA. Gain of invasion was seen in cancer cell lines expressing the fusion. Thus, CLDN18-ARHGAP26 mediates epithelial disintegration, possibly leading to stomach H(+) leakage, and the fusion might contribute to invasiveness once a cell is transformed.
Collapse
Affiliation(s)
- Fei Yao
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore; The Singapore Gastric Cancer Consortium, National University of Singapore, Singapore 119228, Singapore
| | - Jaya P Kausalya
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Yee Yen Sia
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore; The Singapore Gastric Cancer Consortium, National University of Singapore, Singapore 119228, Singapore
| | - Audrey S M Teo
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore; The Singapore Gastric Cancer Consortium, National University of Singapore, Singapore 119228, Singapore
| | - Wah Heng Lee
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Alicia G M Ong
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Zhenshui Zhang
- Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Joanna H J Tan
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Center for Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Denis Bertrand
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Xingliang Liu
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Huay Mei Poh
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Peiyong Guan
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore; School of Computing, National University of Singapore, Singapore 117417, Singapore
| | - Feng Zhu
- The Singapore Gastric Cancer Consortium, National University of Singapore, Singapore 119228, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Thushangi Nadeera Pathiraja
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore; The Singapore Gastric Cancer Consortium, National University of Singapore, Singapore 119228, Singapore
| | - Pramila N Ariyaratne
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Jaideepraj Rao
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Xing Yi Woo
- Personal Genomic Solutions, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Shaojiang Cai
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Fabianus H Mulawadi
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Wan Ting Poh
- Personal Genomic Solutions, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Lavanya Veeravalli
- Research Computing, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Chee Seng Chan
- Research Computing, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Seong Soo Lim
- Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore
| | - See Ting Leong
- Genome Technology and Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Say Chuan Neo
- Genome Technology and Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Poh Sum D Choi
- Genome Technology and Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Elaine G Y Chew
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Niranjan Nagarajan
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | | | - Jimmy B Y So
- The Singapore Gastric Cancer Consortium, National University of Singapore, Singapore 119228, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; National University Health System, Singapore 119228, Singapore
| | - Xiaoan Ruan
- Personal Genomic Solutions, Genome Institute of Singapore, Singapore 138672, Singapore; Genome Technology and Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Khay Guan Yeoh
- The Singapore Gastric Cancer Consortium, National University of Singapore, Singapore 119228, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; National University Health System, Singapore 119228, Singapore
| | - Patrick Tan
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore; The Singapore Gastric Cancer Consortium, National University of Singapore, Singapore 119228, Singapore; Duke-NUS Graduate Medical School, Singapore 169857, Singapore; Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Wing-Kin Sung
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore; School of Computing, National University of Singapore, Singapore 117417, Singapore
| | - Walter Hunziker
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 138673, Singapore; Department of Physiology, National University of Singapore, Singapore 117597, Singapore.
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| | - Axel M Hillmer
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore; The Singapore Gastric Cancer Consortium, National University of Singapore, Singapore 119228, Singapore.
| |
Collapse
|
16
|
Ilina P, Partti S, Niklander J, Ruponen M, Lou YR, Yliperttula M. Effect of differentiation on endocytic profiles of endothelial and epithelial cell culture models. Exp Cell Res 2015; 332:89-101. [DOI: 10.1016/j.yexcr.2015.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 12/31/2022]
|
17
|
Cai B, Xie S, Caplan S, Naslavsky N. GRAF1 forms a complex with MICAL-L1 and EHD1 to cooperate in tubular recycling endosome vesiculation. Front Cell Dev Biol 2014; 2:22. [PMID: 25364729 PMCID: PMC4214196 DOI: 10.3389/fcell.2014.00022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/08/2014] [Indexed: 12/15/2022] Open
Abstract
The biogenesis of tubular recycling endosomes (TREs) and their subsequent vesiculation after cargo-sorting has occurred, is essential for receptor and lipid recycling to the plasma membrane. Although recent studies have implicated the C-terminal Eps15 Homology Domain (EHD) protein, EHD1, as a key regulator of TRE vesiculation, additional proteins involved in this process have been largely uncharacterized. In the present study, we identify the GTPase Regulator Associated with Focal adhesion kinase-1 (GRAF1) protein in a complex with EHD1 and the TRE hub protein, Molecules Interacting with CasL-Like1 (MICAL-L1). Over-expression of GRAF1 caused vesiculation of MICAL-L1-containing TRE, whereas GRAF1-depletion led to impaired TRE vesiculation and delayed receptor recycling. Moreover, co-addition of purified EHD1 and GRAF1 in a semi-permeabilized cell vesiculation assay produced synergistic TRE vesiculation. Overall, based on our data, we suggest that in addition to its roles in clathrin-independent endocytosis, GRAF1 synergizes with EHD1 to support TRE vesiculation.
Collapse
Affiliation(s)
- Bishuang Cai
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center Omaha, NE, USA
| | - Shuwei Xie
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center Omaha, NE, USA
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center Omaha, NE, USA
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center Omaha, NE, USA
| |
Collapse
|
18
|
Uptake of Helicobacter pylori vesicles is facilitated by clathrin-dependent and clathrin-independent endocytic pathways. mBio 2014; 5:e00979-14. [PMID: 24846379 PMCID: PMC4030451 DOI: 10.1128/mbio.00979-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria shed a diverse set of outer membrane vesicles that function as transport vehicles to deliver effector molecules and virulence factors to host cells. Helicobacter pylori is a gastric pathogen that infects half of the world’s population, and in some individuals the infection progresses into peptic ulcer disease or gastric cancer. Here we report that intact vesicles from H. pylori are internalized by clathrin-dependent endocytosis and further dynamin-dependent processes, as well as in a cholesterol-sensitive manner. We analyzed the uptake of H. pylori vesicles by gastric epithelial cells using a method that we refer to as quantification of internalized substances (qIS). The qIS assay is based on a near-infrared dye with a cleavable linker that enables the specific quantification of internalized substances after exposure to reducing conditions. Both chemical inhibition and RNA interference in combination with the qIS assay showed that H. pylori vesicles enter gastric epithelial cells via both clathrin-mediated endocytosis and additional endocytic processes that are dependent on dynamin. Confocal microscopy revealed that H. pylori vesicles colocalized with clathrin and dynamin II and with markers of subsequent endosomal and lysosomal trafficking. Interestingly, however, knockdown of components required for caveolae had no significant effect on internalization and knockdown of components required for clathrin-independent carrier (CLIC) endocytosis increased internalization of H. pylori vesicles. Furthermore, uptake of vesicles by both clathrin-dependent and -independent pathways was sensitive to depletion, but not sequestering, of cholesterol in the host cell membrane suggesting that membrane fluidity influences the efficiency of H. pylori vesicle uptake. Bacterial vesicles act as long-distance tools to deliver toxins and effector molecules to host cells. Vesicles can cause a variety of host cell responses via cell surface-induced cell signaling or internalization. Vesicles of diverse bacterial species enter host cells via different endocytic pathways or via membrane fusion. With the combination of a fluorescence-based quantification assay that quantifies internalized vesicles in a large number of cells and either chemical inhibition or RNA interference, we show that clathrin-mediated endocytosis is the major pathway for uptake of Helicobacter pylori vesicles and that lipid microdomains of the host cell membrane affect uptake of vesicles via clathrin-independent pathways. Our results provide important insights about membrane fluidity and its important role in the complex process that directs the H. pylori vesicle to a specific endocytic pathway. Understanding the mechanisms that operate in vesicle-host interactions is important to fully recognize the impact of vesicles in pathogenesis.
Collapse
|
19
|
|
20
|
Abstract
Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever (HF) disease in humans and pose a great public health concern in the regions in which they are endemic. Moreover, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. The limited existing armamentarium to combat human-pathogenic arenaviruses underscores the importance of developing novel antiarenaviral drugs, a task that would be facilitated by the identification and characterization of virus-host cell factor interactions that contribute to the arenavirus life cycle. A genome-wide small interfering RNA (siRNA) screen identified sodium hydrogen exchanger 3 (NHE3) as required for efficient multiplication of LCMV in HeLa cells, but the mechanisms by which NHE activity contributed to the life cycle of LCMV remain unknown. Here we show that treatment with the NHE inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA) resulted in a robust inhibition of LCMV multiplication in both rodent (BHK-21) and human (A549) cells. EIPA-mediated inhibition was due not to interference with virus RNA replication, gene expression, or budding but rather to a blockade of virus cell entry. EIPA also inhibited cell entry mediated by the glycoproteins of the HF arenaviruses LASV and Junin virus (JUNV). Pharmacological and genetic studies revealed that cell entry of LCMV in A549 cells depended on actin remodeling and Pak1, suggesting a macropinocytosis-like cell entry pathway. Finally, zoniporide, an NHE inhibitor being explored as a therapeutic agent to treat myocardial infarction, inhibited LCMV propagation in culture cells. Our findings indicate that targeting NHEs could be a novel strategy to combat human-pathogenic arenaviruses.
Collapse
|
21
|
Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther 2013; 21:1118-30. [PMID: 23587924 DOI: 10.1038/mt.2013.54] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ideal nonviral vector delivers its nucleic acid cargo to a specific intracellular target. Vectors enter cells mainly through endocytosis and are distributed to various intracellular organelles. Recent advances in microscopy, lipidomics, and proteomics confirm that the cell membrane is composed of clusters of lipids, organized in the form of lipid raft domains, together with non-raft domains that comprise a generally disordered lipid milieu. The binding of a nonviral vector to either region can determine the pathway for its endocytic uptake and subsequent intracellular itinerary. Given this model of the cell membrane structure, endocytic pathways should be reclassified in relation to lipid rafts. In this review, we attempt to assess the currently recognized endocytic pathways in mammalian cells. The endocytic pathways are classified in relation to the membrane regions that make up the primary endocytic vesicles. This review covers the well-recognized clathrin-mediated endocytosis (CME), phagocytosis, and macropinocytosis in addition to the less addressed pathways that take place in lipid rafts. These include caveolae-mediated, flotillin-dependent, GTPase regulator associated with focal adhesion kinase-1 (GRAF1)-dependent, adenosine diphosphate-ribosylation factor 6 (Arf6)-dependent, and RhoA-dependent endocytic pathways. We summarize the regulators associated with each uptake pathway and methods for interfering with these regulators are discussed. The fate of endocytic vesicles resulting from each endocytic uptake pathway is highlighted.
Collapse
|
22
|
Abstract
Cytoskeletal dynamics are key to the establishment of cell polarity and the consequent coordination of protrusion and contraction that drives cell migration. During these events, the actin and microtubule cytoskeleton act in concert with the cellular machinery that controls endo-and exocytosis, thus regulating polarized traffic of membranes and membrane-associated proteins. Small GTPases of the Rho family orchestrate cytoskeletal dynamics. Rho GTPase signaling is tightly regulated and mislocalization or constitutive activation may lead to, for example, morphogenetic abnormalities, tumor cell metastasis or apoptosis. There is increasing evidence that traffic to and from the plasma membrane constitutes an important mechanism controlling Rho GTPase activation and signaling. This brief overview discusses a group of proteins that function at the interface between membrane dynamics and RhoGTPase signaling. These proteins all share a so-called BAR domain, which is a lipid and protein binding region that also harbors membrane deforming activity. In the past 15 years, a growing number of BAR domain proteins have been identified and found to regulate Rho GTPase signaling. The studies discussed here define several modes of RhoGTPase regulation through BAR-domain containing proteins, identifying the BAR domain as an important regulatory unit bridging membrane traffic and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Bart-Jan de Kreuk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
23
|
Chi X, Wang S, Huang Y, Stamnes M, Chen JL. Roles of rho GTPases in intracellular transport and cellular transformation. Int J Mol Sci 2013; 14:7089-108. [PMID: 23538840 PMCID: PMC3645678 DOI: 10.3390/ijms14047089] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 01/21/2023] Open
Abstract
Rho family GTPases belong to the Ras GTPase superfamily and transduce intracellular signals known to regulate a variety of cellular processes, including cell polarity, morphogenesis, migration, apoptosis, vesicle trafficking, viral transport and cellular transformation. The three best-characterized Rho family members are Cdc42, RhoA and Rac1. Cdc42 regulates endocytosis, the transport between the endoplasmic reticulum and Golgi apparatus, post-Golgi transport and exocytosis. Cdc42 influences trafficking through interaction with Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex, leading to changes in actin dynamics. Rac1 mediates endocytic and exocytic vesicle trafficking by interaction with its effectors, PI3kinase, synaptojanin 2, IQGAP1 and phospholipase D1. RhoA participates in the regulation of endocytosis through controlling its downstream target, Rho kinase. Interestingly, these GTPases play important roles at different stages of viral protein and genome transport in infected host cells. Importantly, dysregulation of Cdc42, Rac1 and RhoA leads to numerous disorders, including malignant transformation. In some cases, hyperactivation of Rho GTPases is required for cellular transformation. In this article, we review a number of findings related to Rho GTPase function in intracellular transport and cellular transformation.
Collapse
Affiliation(s)
- Xiaojuan Chi
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
| | - Song Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; E-Mail:
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
| | - Mark Stamnes
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; E-Mail:
| | - Ji-Long Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-6480-7300; Fax: +86-10-6480-7980
| |
Collapse
|
24
|
Cortese K, Howes MT, Lundmark R, Tagliatti E, Bagnato P, Petrelli A, Bono M, McMahon HT, Parton RG, Tacchetti C. The HSP90 inhibitor geldanamycin perturbs endosomal structure and drives recycling ErbB2 and transferrin to modified MVBs/lysosomal compartments. Mol Biol Cell 2012; 24:129-44. [PMID: 23154999 PMCID: PMC3541960 DOI: 10.1091/mbc.e12-04-0282] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ErbB2 receptor is a validated cancer target whose internalization and trafficking remain poorly understood. The authors propose that ErbB2 internalization upon geldanamycin (GA) occurs predominantly via clathrin-mediated endocytosis and that GA affects endosomal structure and sorting, forcing recycling cargoes toward mixed endo/lysosomal compartments, irrespective of their HSP90 interaction. The ErbB2 receptor is a clinically validated cancer target whose internalization and trafficking mechanisms remain poorly understood. HSP90 inhibitors, such as geldanamycin (GA), have been developed to target the receptor to degradation or to modulate downstream signaling. Despite intense investigations, the entry route and postendocytic sorting of ErbB2 upon GA stimulation have remained controversial. We report that ErbB2 levels inversely impact cell clathrin-mediated endocytosis (CME) capacity. Indeed, the high levels of the receptor are responsible for its own low internalization rate. GA treatment does not directly modulate ErbB2 CME rate but it affects ErbB2 recycling fate, routing the receptor to modified multivesicular endosomes (MVBs) and lysosomal compartments, by perturbing early/recycling endosome structure and sorting capacity. This activity occurs irrespective of the cargo interaction with HSP90, as both ErbB2 and the constitutively recycled, HSP90-independent, transferrin receptor are found within modified endosomes, and within aberrant, elongated recycling tubules, leading to modified MVBs/lysosomes. We propose that GA, as part of its anticancer activity, perturbs early/recycling endosome sorting, routing recycling cargoes toward mixed endosomal compartments.
Collapse
Affiliation(s)
- Katia Cortese
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
On the cellular processing of non-viral nanomedicines for nucleic acid delivery: Mechanisms and methods. J Control Release 2012; 161:566-81. [DOI: 10.1016/j.jconrel.2012.05.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 11/24/2022]
|
26
|
Nonnenmacher M, Weber T. Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. Cell Host Microbe 2012; 10:563-76. [PMID: 22177561 DOI: 10.1016/j.chom.2011.10.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 08/23/2011] [Accepted: 10/06/2011] [Indexed: 12/13/2022]
Abstract
Adeno-associated viruses (AAVs) are nonpathogenic, nonenveloped, single-stranded DNA viruses in development as gene therapy vectors. AAV internalization was postulated to proceed via a dynamin-dependent endocytic mechanism. Revisiting this, we find that infectious endocytosis of the prototypical AAV, AAV2, is independent of clathrin, caveolin, and dynamin. AAV2 infection is sensitive to EIPA, a fluid-phase uptake inhibitor, but is unaffected by Rac1 mutants or other macropinocytosis inhibitors. In contrast, AAV2 infection requires actin cytoskeleton remodeling and membrane cholesterol and is sensitive to inhibition of Cdc42, Arf1, and GRAF1, factors known to be involved in the formation of clathrin-independent carriers (CLIC). AAV2 virions are internalized in the detergent-resistant GPI-anchored-protein-enriched endosomal compartment (GEEC) and translocated to the Golgi apparatus, similarly to the CLIC/GEEC marker cholera toxin B. Our results indicate that-unlike the viral entry mechanisms described so far-AAV2 uses the pleiomorphic CLIC/GEEC pathway as its major endocytic infection route.
Collapse
Affiliation(s)
- Mathieu Nonnenmacher
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
27
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Endocytosis is a fundamental process in which eukaryotic cells internalise molecules and macromolecules via deformation of the membrane and generation of membrane-bound carriers. Functional aspects are not only limited to uptake of nutrients, but also play a primary role in evolutionary conserved processes such as the regulation of plasma membrane protein activity (i.e. signal-transducing receptors, small-molecule transporters and ion channels), cell motility and mitosis. The macromolecular nature of the material transported by endocytosis makes this route one of the most important targets for nanomedicine. Indeed, many nanoparticle formulations have been customised to enter cells through endocytosis and deliver the cargo within the cell. In this critical review, we present an overview of the biology of endocytosis and discuss its implications in cell internalisation of nanoparticles. We discuss how nanoparticle size, shape and surface chemistry can control this process effectively. Finally, we discuss different drug delivery strategies on how to evade lysosomal degradation to promote effective release of the cargo (376 references).
Collapse
Affiliation(s)
- Irene Canton
- The Krebs Institute, The Centre for Membrane Interaction and Dynamics, The Sheffield Cancer Research Centre, and the Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | | |
Collapse
|
29
|
Abstract
Cell-to-cell fusion plays an important role in normal physiology and in different pathological conditions. Early fusion stages mediated by specialized proteins and yielding fusion pores are followed by a pore expansion stage that is dependent on cell metabolism and yet unidentified machinery. Because of a similarity of membrane bending in the fusion pore rim and in highly curved intracellular membrane compartments, in the present study we explored whether changes in the activity of the proteins that generate these compartments affect cell fusion initiated by protein fusogens of influenza virus and baculovirus. We raised the intracellular concentration of curvature-generating proteins in cells by either expressing or microinjecting the ENTH (epsin N-terminal homology) domain of epsin or by expressing the GRAF1 (GTPase regulator associated with focal adhesion kinase 1) BAR (Bin/amphiphysin/Rvs) domain or the FCHo2 (FCH domain-only protein 2) F-BAR domain. Each of these treatments promoted syncytium formation. Cell fusion extents were also influenced by treatments targeting the function of another curvature-generating protein, dynamin. Cell-membrane-permeant inhibitors of dynamin GTPase blocked expansion of fusion pores and dominant-negative mutants of dynamin influenced the syncytium formation extents. We also report that syncytium formation is inhibited by reagents lowering the content and accessibility of PtdIns(4,5)P2, an important regulator of intracellular membrane remodelling. Our findings indicate that fusion pore expansion at late stages of cell-to-cell fusion is mediated, directly or indirectly, by intracellular membrane-shaping proteins.
Collapse
|
30
|
de Curtis I, Meldolesi J. Cell surface dynamics – how Rho GTPases orchestrate the interplay between the plasma membrane and the cortical cytoskeleton. J Cell Sci 2012; 125:4435-44. [DOI: 10.1242/jcs.108266] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Small GTPases are known to regulate hundreds of cell functions. In particular, Rho family GTPases are master regulators of the cytoskeleton. By regulating actin nucleation complexes, Rho GTPases control changes in cell shape, including the extension and/or retraction of surface protrusions and invaginations. Protrusion and invagination of the plasma membrane also involves the interaction between the plasma membrane and the cortical cytoskeleton. This interplay between membranes and the cytoskeleton can lead to an increase or decrease in the plasma membrane surface area and its tension as a result of the fusion (exocytosis) or internalization (endocytosis) of membranous compartments, respectively. For a long time, the cytoskeleton and plasma membrane dynamics were investigated separately. However, studies from many laboratories have now revealed that Rho GTPases, their modulation of the cytoskeleton, and membrane traffic are closely connected during the dynamic remodeling of the cell surface. Arf- and Rab-dependent exocytosis of specific vesicles contributes to the targeting of Rho GTPases and their regulatory factors to discrete sites of the plasma membrane. Rho GTPases regulate the tethering of exocytic vesicles and modulate their subsequent fusion. They also have crucial roles in the different forms of endocytosis, where they participate in the sorting of membrane domains as well as the sculpting and sealing of membrane flasks and cups. Here, we discuss how cell surface dynamics depend on the orchestration of the cytoskeleton and the plasma membrane by Rho GTPases.
Collapse
|
31
|
Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One 2011; 6:e24438. [PMID: 21949717 PMCID: PMC3176276 DOI: 10.1371/journal.pone.0024438] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 08/10/2011] [Indexed: 12/31/2022] Open
Abstract
Nanotechnology is expected to play a vital role in the rapidly developing field of nanomedicine, creating innovative solutions and therapies for currently untreatable diseases, and providing new tools for various biomedical applications, such as drug delivery and gene therapy. In order to optimize the efficacy of nanoparticle (NP) delivery to cells, it is necessary to understand the mechanisms by which NPs are internalized by cells, as this will likely determine their ultimate sub-cellular fate and localisation. Here we have used pharmacological inhibitors of some of the major endocytic pathways to investigate nanoparticle uptake mechanisms in a range of representative human cell lines, including HeLa (cervical cancer), A549 (lung carcinoma) and 1321N1 (brain astrocytoma). Chlorpromazine and genistein were used to inhibit clathrin and caveolin mediated endocytosis, respectively. Cytochalasin A and nocodazole were used to inhibit, respectively, the polymerisation of actin and microtubule cytoskeleton. Uptake experiments were performed systematically across the different cell lines, using carboxylated polystyrene NPs of 40 nm and 200 nm diameters, as model NPs of sizes comparable to typical endocytic cargoes. The results clearly indicated that, in all cases and cell types, NPs entered cells via active energy dependent processes. NP uptake in HeLa and 1321N1 cells was strongly affected by actin depolymerisation, while A549 cells showed a stronger inhibition of NP uptake (in comparison to the other cell types) after microtubule disruption and treatment with genistein. A strong reduction of NP uptake was observed after chlorpromazine treatment only in the case of 1321N1 cells. These outcomes suggested that the same NP might exploit different uptake mechanisms to enter different cell types.
Collapse
|
32
|
Vercauteren D, Piest M, van der Aa LJ, Al Soraj M, Jones AT, Engbersen JF, De Smedt SC, Braeckmans K. Flotillin-dependent endocytosis and a phagocytosis-like mechanism for cellular internalization of disulfide-based poly(amido amine)/DNA polyplexes. Biomaterials 2011; 32:3072-84. [DOI: 10.1016/j.biomaterials.2010.12.045] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/27/2010] [Indexed: 10/18/2022]
|
33
|
Krag C, Malmberg EK, Salcini AE. PI3KC2α, a class II PI3K, is required for dynamin-independent internalization pathways. J Cell Sci 2010; 123:4240-50. [DOI: 10.1242/jcs.071712] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence indicates that cellular uptake of several molecules can occur independently of functional dynamin, but the molecular players that regulate dynamin-independent endocytosis and the subsequent trafficking steps are still largely unknown. A survival-based short-hairpin (sh) RNA screen using a cell line expressing a diphtheria toxin receptor (DTR, officially known as HBEGF) anchored to GPI (DTR–GPI), which internalizes diphtheria toxin (DT, officially known as DTX) in a dynamin-independent manner, identified PI3KC2α, a class II phosphoinositide 3-kinase (PI3K), as a specific regulator of dynamin-independent DT internalization. We found that the internalization of several proteins that enter the cell through dynamin-independent pathways led to a relocalization of PI3KC2α to cargo-positive vesicles. Furthermore, downregulation of PI3KC2α impaired internalization of CD59 as well as fluid-phase endocytosis. Our data suggest a general role for PI3KC2α in regulating physiologically relevant dynamin-independent internalization pathways by recruiting early endosome antigen 1 (EEA1) to vesicular compartments, a step required for the intracellular trafficking of vesicles generated by dynamin-independent endocytic pathways.
Collapse
Affiliation(s)
- Claudia Krag
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen, Denmark
| | - Emily Kim Malmberg
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen, Denmark
| |
Collapse
|
34
|
Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 2010; 111:253-80. [PMID: 21077606 DOI: 10.1021/cr1001832] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Lundmark R, Carlsson SR. Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosis. Semin Cell Dev Biol 2009; 21:363-70. [PMID: 19931628 DOI: 10.1016/j.semcdb.2009.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
Cellular activity depends to a large extent on membrane bilayer dynamics. Many processes, such as organelle biogenesis and vesicular transport, rely on alterations in membrane structure and shape. It is now widely accepted that intracellular membrane curvature generation and remodelling is mediated and regulated by protein action, and the mechanisms behind the processes are currently being revealed. Here, we will briefly discuss the key principles of membrane deformation and focus on different endocytic events that use various kinds of proteins to shape the plasma membrane into transport carriers. The entry routes are adopted to make sure that a vast variety of molecules on the cell surface can be regulated by endocytosis. The principles for membrane sculpting of endocytic carriers can be viewed either from a perspective of rigid coat budding or of flexible opportunistic budding. We will discuss these principles and their implications, focusing on clathrin-dependent and -independent carrier formation and the proteins involved in the respective pathways.
Collapse
Affiliation(s)
- Richard Lundmark
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden.
| | | |
Collapse
|