1
|
Ramadoss R, Yuwanati M, Ramani P, Krishnan R, Annasamy R. Glandular metaplasia in oral squamous cell carcinoma: Prognostic indicators? Deriving inference from urothelial and breast carcinoma. Oral Oncol 2021; 124:105639. [PMID: 34837728 DOI: 10.1016/j.oraloncology.2021.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Ramya Ramadoss
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India.
| | - Monal Yuwanati
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Pratibha Ramani
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | | | | |
Collapse
|
2
|
Rothman J, Jarriault S. Developmental Plasticity and Cellular Reprogramming in Caenorhabditis elegans. Genetics 2019; 213:723-757. [PMID: 31685551 PMCID: PMC6827377 DOI: 10.1534/genetics.119.302333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
While Caenorhabditis elegans was originally regarded as a model for investigating determinate developmental programs, landmark studies have subsequently shown that the largely invariant pattern of development in the animal does not reflect irreversibility in rigidly fixed cell fates. Rather, cells at all stages of development, in both the soma and germline, have been shown to be capable of changing their fates through mutation or forced expression of fate-determining factors, as well as during the normal course of development. In this chapter, we review the basis for natural and induced cellular plasticity in C. elegans We describe the events that progressively restrict cellular differentiation during embryogenesis, starting with the multipotency-to-commitment transition (MCT) and subsequently through postembryonic development of the animal, and consider the range of molecular processes, including transcriptional and translational control systems, that contribute to cellular plasticity. These findings in the worm are discussed in the context of both classical and recent studies of cellular plasticity in vertebrate systems.
Collapse
Affiliation(s)
- Joel Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93111, and
| | - Sophie Jarriault
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Department of Development and Stem Cells, CNRS UMR7104, Inserm U1258, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| |
Collapse
|
3
|
Lee MY, Park YH. Potential of Gene and Cell Therapy for Inner Ear Hair Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8137614. [PMID: 30009175 PMCID: PMC6020521 DOI: 10.1155/2018/8137614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is caused by the loss of sensory hair cells (HCs) or a damaged afferent nerve pathway to the auditory cortex. The most common option for the treatment of sensorineural hearing loss is hearing rehabilitation using hearing devices. Various kinds of hearing devices are available but, despite recent advancements, their perceived sound quality does not mimic that of the "naïve" cochlea. Damage to crucial cochlear structures is mostly irreversible and results in permanent hearing loss. Cochlear HC regeneration has long been an important goal in the field of hearing research. However, it remains challenging because, thus far, no medical treatment has successfully regenerated cochlear HCs. Recent advances in genetic modulation and developmental techniques have led to novel approaches to generating HCs or protecting against HC loss, to preserve hearing. In this review, we present and review the current status of two different approaches to restoring or protecting hearing, gene therapy, including the newly introduced CRISPR/Cas9 genome editing, and stem cell therapy, and suggest the future direction.
Collapse
Affiliation(s)
- Min Yong Lee
- Department of Otorhinolaryngology and Head & Neck Surgery, Dankook University Hospital, Cheonan, Chungnam, Republic of Korea
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Spickard EA, Joshi PM, Rothman JH. The multipotency-to-commitment transition in Caenorhabditis elegans-implications for reprogramming from cells to organs. FEBS Lett 2018; 592:838-851. [PMID: 29334121 DOI: 10.1002/1873-3468.12977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
In animal embryos, cells transition from a multipotential state, with the capacity to adopt multiple fates, into an irreversible, committed state of differentiation. This multipotency-to-commitment transition (MCT) is evident from experiments in which cell fate is reprogrammed by transcription factors for cell type-specific differentiation, as has been observed extensively in Caenorhabditis elegans. Although factors that direct differentiation into each of the three germ layer types cannot generally reprogram cells after the MCT in this animal, transcription factors for endoderm development are able to do so in multiple differentiated cell types. In one case, these factors can redirect the development of an entire organ in the process of "transorganogenesis". Natural transdifferentiation also occurs in a small number of differentiated cells during normal C. elegans development. We review these reprogramming and transdifferentiation events, highlighting the cellular and developmental contexts in which they occur, and discuss common themes underlying direct cell lineage reprogramming. Although certain aspects may be unique to the model system, growing evidence suggests that some mechanisms are evolutionarily conserved and may shed light on cellular plasticity and disease in humans.
Collapse
Affiliation(s)
- Erik A Spickard
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, CA, USA
| | - Pradeep M Joshi
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, CA, USA
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, CA, USA
| |
Collapse
|
5
|
Riddle MR, Spickard EA, Jevince A, Nguyen KCQ, Hall DH, Joshi PM, Rothman JH. Transorganogenesis and transdifferentiation in C. elegans are dependent on differentiated cell identity. Dev Biol 2016; 420:136-147. [PMID: 27717645 PMCID: PMC5224929 DOI: 10.1016/j.ydbio.2016.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/12/2016] [Accepted: 09/23/2016] [Indexed: 10/25/2022]
Abstract
The differentiated cell identities and structure of fully formed organs are generally stable after their development. In contrast, we report here that development of the C. elegans proximal somatic gonad (hermaphrodite uterus and spermathecae, and male vas deferens) can be redirected into intestine-like organs by brief expression of the ELT-7 GATA transcription factor. This process converts one developing organ into another and can hence be considered "transorganogenesis." We show that, following pulsed ELT-7 expression, cells of the uterus activate and maintain intestine-specific gene expression and are transformed at the ultrastructural level to form an epithelial tube resembling the normal intestine formed during embryogenesis. Ubiquitous ELT-7 expression activates intestinal markers in many different cell types but only cells in the somatic gonad and pharynx appear to become fully reprogrammed. We found that ectopic expression of other endoderm-promoting transcription factors, but not muscle- or ectoderm- promoting transcription factors, redirects the fate of these organs, suggesting that pharyngeal and somatic gonad cells are specifically competent to adopt intestine identity. Although the intestine, pharynx, and somatic gonad are derived from distant cell lineages, they all express the PHA-4/FoxA transcription factor. While we found that post-embryonic PHA-4 is not necessary for pharynx or uterus reprogramming and PHA-4 is not sufficient in combination with ELT-7 to induce reprogramming in other cells types, knock down of PHA-4 during embryogenesis, which abolishes normal pharynx differentiation, prevents pharyngeal precursors from being reprogrammed into intestine. These results suggest that differentiated cell identity determines susceptibility to transdifferentiation and highlight the importance of cellular context in controlling competency for reprogramming.
Collapse
Affiliation(s)
- Misty R Riddle
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Erik A Spickard
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Angela Jevince
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ken C Q Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pradeep M Joshi
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Joel H Rothman
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
6
|
Song JH, Han YM, Kim WH, Park JM, Jeong M, Go EJ, Hong SP, Hahm KB. Oxidative stress from reflux esophagitis to esophageal cancer: the alleviation with antioxidants. Free Radic Res 2016; 50:1071-1079. [DOI: 10.1080/10715762.2016.1181262] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ji Hyun Song
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea
| | - Young-Min Han
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam, Korea
| | - Won Hee Kim
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea
| | - Jong-Min Park
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam, Korea
| | - Migyeong Jeong
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam, Korea
| | - Eun Jin Go
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam, Korea
| | - Sung Pyo Hong
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea
| | - Ki Baik Hahm
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam, Korea
| |
Collapse
|
7
|
McQuaid KR, Laine L, Fennerty MB, Souza R, Spechler SJ. Systematic review: the role of bile acids in the pathogenesis of gastro-oesophageal reflux disease and related neoplasia. Aliment Pharmacol Ther 2011; 34:146-65. [PMID: 21615439 DOI: 10.1111/j.1365-2036.2011.04709.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Factors other than acid may play a role in gastro-oesophageal reflux disease (GERD) and its complications. AIM To assessed the role of bile acids in the pathogenesis of GERD, Barrett's oesophagus and Barrett's-related neoplasia. METHODS We conducted a systematic review of computerised bibliographic databases for original articles involving humans or human oesophageal tissue or cells that assessed exposure to or manipulation of bile acids. Outcomes assessed included GERD symptoms; gross oesophageal injury; Barrett's oesophagus and related neoplasia; and intermediate markers of inflammation, proliferation or neoplasia. RESULTS Eighty-three original articles were included. In in vivo studies, bile acids concentrations were higher in the oesophageal aspirates of patients with GERD than controls, and bile acids infusions triggered GERD symptoms, especially in high concentrations or in combination with acid. In ex vivo/in vitro studies, bile acids stimulated squamous oesophageal cells and Barrett's epithelial cells to produce inflammatory mediators (e.g., IL-8 and COX-2) and caused oxidative stress, DNA damage and apoptosis. They also induced squamous cells to change their gene expression pattern to resemble intestinal-type cells and caused Barrett's cells to increase expression of intestinal-type genes. CONCLUSIONS In aggregate, these studies suggest that bile acids may contribute to the pathogenesis of symptoms, oesophagitis and Barrett's metaplasia with related carcinogenesis in patients with GERD. However, all study results are not uniform and substantial differences in study parameters may explain at least some of this variation.
Collapse
Affiliation(s)
- K R McQuaid
- Veterans Affairs Medical Center and Department of Medicine, University of California, San Francisco, CA 94121, USA.
| | | | | | | | | |
Collapse
|