1
|
Dolma S, Joshi A. The Node of Ranvier as an Interface for Axo-Glial Interactions: Perturbation of Axo-Glial Interactions in Various Neurological Disorders. J Neuroimmune Pharmacol 2023; 18:215-234. [PMID: 37285016 DOI: 10.1007/s11481-023-10072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The action potential conduction along the axon is highly dependent on the healthy interactions between the axon and myelin-producing glial cells. Myelin, which facilitates action potential, is the protective insulation around the axon formed by Schwann cells and oligodendrocytes in the peripheral (PNS) and central nervous system (CNS), respectively. Myelin is a continuous structure with intermittent gaps called nodes of Ranvier, which are the sites enriched with ion channels, transmembrane, scaffolding, and cytoskeletal proteins. Decades-long extensive research has identified a comprehensive proteome with strictly regularized localization at the node of Ranvier. Concurrently, axon-glia interactions at the node of Ranvier have gathered significant attention as the pathophysiological targets for various neurodegenerative disorders. Numerous studies have shown the alterations in the axon-glia interactions culminating in neurological diseases. In this review, we have provided an update on the molecular composition of the node of Ranvier. Further, we have discussed in detail the consequences of disruption of axon-glia interactions during the pathogenesis of various CNS and PNS disorders.
Collapse
Affiliation(s)
- Sonam Dolma
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India
| | - Abhijeet Joshi
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India.
| |
Collapse
|
2
|
Ye X, Chen L, Wang H, Peng S, Liu M, Yao L, Zhang Y, Shi YS, Cao Y, Yang JJ, Chen G. Genetic inhibition of PDK1 robustly reduces plaque deposition and ameliorates gliosis in the 5×FAD mouse model of Alzheimer's disease. Neuropathol Appl Neurobiol 2022; 48:e12839. [PMID: 35881686 DOI: 10.1111/nan.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/05/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
AIMS Abundant recent evidence has shown that 3-phosphoinositide-dependent protein kinase 1 (PDK1) is activated in Alzheimer's disease (AD). However, it remains unknown whether inhibition of PDK1 in neurons may affect AD-like pathology in animal models of AD. Here, we aim to examine the effects of specific inactivation of neuronal PDK1 on pathology and behaviour in 5×FAD mice and to identify the underlying molecular mechanisms. METHODS The Cre-loxP system was employed to generate Pdk1 cKO/5×FAD mice, in which PDK1 is inactivated in excitatory neurons in the adult forebrain. Cellular and behavioural techniques were used to examine plaque burden, inflammatory responses and spatial working memory in mice. Biochemical and molecular analyses were conducted to investigate relevant mechanisms. RESULTS First, Aβ deposition was massively decreased and gliosis was highly attenuated in Pdk1 cKO/5×FAD mice compared with 5×FAD mice. Second, memory deficits were significantly improved in Pdk1 cKO/5×FAD mice. Third, APP levels were notably decreased in Pdk1 cKO/5×FAD mice. Fourth, mammalian target of rapamycin (mTOR) signalling and ribosome biogenesis were reduced in Pdk1 cKO/5×FAD mice. CONCLUSIONS Neuron-specific deletion of PDK1 robustly ameliorates AD-like pathology and improves spatial working memory in 5×FAD mice. We propose that genetic approach to inhibit PDK1 may be an effective strategy to slow AD.
Collapse
Affiliation(s)
- Xiaolian Ye
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Lu Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - He Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shixiao Peng
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Mengjia Liu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Liyang Yao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yizhi Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yun Stone Shi
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Ying Cao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiquan Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Teng X, Hu P, Chen Y, Zang Y, Ye X, Ou J, Chen G, Shi YS. A novel
Lgi1
mutation causes white matter abnormalities and impairs motor coordination in mice. FASEB J 2022; 36:e22212. [DOI: 10.1096/fj.202101652r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao‐Yu Teng
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Ping Hu
- Department of Prenatal Diagnosis State Key Laboratory of Reproductive Medicine Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital Nanjing China
| | - Yangyang Chen
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Yanyu Zang
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Xiaolian Ye
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Jingmin Ou
- Department of General Surgery Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Guiquan Chen
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Yun Stone Shi
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
- State Key Laboratory of Pharmaceutical Biotechnology Department of Neurology Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing University Nanjing China
- Institute for Brain Sciences Nanjing University Nanjing China
- Chemistry and Biomedicine Innovation Center Nanjing University Nanjing China
| |
Collapse
|
4
|
McNeil CJ, Myint PK, Sandu AL, Potter JF, Staff R, Whalley LJ, Murray AD. Increased diastolic blood pressure is associated with MRI biomarkers of dementia-related brain pathology in normative ageing. Age Ageing 2018; 47:95-100. [PMID: 29106439 DOI: 10.1093/ageing/afx102] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/12/2017] [Indexed: 11/12/2022] Open
Abstract
Background hypertension is a risk for brain ageing, but the mechanisms underlying this effect remain unclear. Magnetic resonance imaging (MRI) detected biomarkers of brain ageing include white matter hyperintensities (WMHs), a marker of cerebrovascular disease, and hippocampal volume, a marker of Alzheimer's disease pathology. Objective to examine relationships between blood pressure (BP) components and brain pathology in older adults. Subjects two hundred and twenty-seven members of the Aberdeen 1936 Birth Cohort between ages 64 and 68 years. Methods BP was assessed biennially between 64 and 68 years and brain MRI performed at 68 years. The risk factors of interest were diastolic and systolic BP and their visit-to-visit variability. Outcomes were WMH abundance and hippocampal volume. Regression models, controlling for confounding factors, examined their relationships. Results higher diastolic BP predicted increased WMH (β = 0.13, P = 0.044) and smaller hippocampi (β = -0.25, P = 0.006). In contrast, increased systolic BP predicted larger hippocampi (β = 0.22, P = 0.013). Variability of diastolic BP predicted lower hippocampal volume (β = -0.15, P = 0.033). These relationships were independent of confounding life-course risk factors. Anti-hypertensive medication did not modify these relationships, but was independently associated with increased WMH (β = 0.17, P = 0.011). Conclusion increased diastolic BP is associated with biomarkers of both cerebrovascular and Alzheimer's diseases, whereas the role of systolic BP is less clear, with evidence for a protective effect on hippocampal volume. These differing relationships emphasise the importance of considering individual BP components with regard to brain ageing and pathology. Interventions targeting diastolic hypertension and its chronic variability may provide new strategies able to slow the accumulation of these harmful pathologies.
Collapse
Affiliation(s)
- Christopher J McNeil
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Phyo Kyaw Myint
- AGEING: Epidemiology Group, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
- Department of Medicine for the Elderly, NHS Grampian, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Anca-Larisa Sandu
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - John F Potter
- Norwich Medical School, Norwich Research Park Cardiovascular Research Group, University of East Anglia, Norwich, UK
| | - Roger Staff
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
- NHS Grampian, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Lawrence J Whalley
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
5
|
Wang H, Zhang BF, Zhang TT, Wang L, Zou XY, Xu Y, Chen L, Chen GQ. Impaired Spatial Learning is Associated with Disrupted Integrity of the White Matter in Akt3 Knockout Mice. CNS Neurosci Ther 2016; 23:99-102. [PMID: 27671373 DOI: 10.1111/cns.12647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
- He Wang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province, China
| | - Bao-Feng Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ting-Ting Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiao-Yan Zou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Gui-Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Zhan X, Jickling GC, Ander BP, Liu D, Stamova B, Cox C, Jin LW, DeCarli C, Sharp FR. Myelin injury and degraded myelin vesicles in Alzheimer's disease. Curr Alzheimer Res 2014; 11:232-8. [PMID: 24484278 DOI: 10.2174/1567205011666140131120922] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Myelin disruption is an important feature of Alzheimer's disease (AD) that contributes to impairment of neuronal circuitry and cognition. In this study we characterize myelin degradation in the brains of patients with Alzheimer's disease compared with normal aged controls. METHODS Myelin from patients with AD (n=13) was compared to matched controls (n=6). Myelin degradation was examined by immunohistochemistry in frontal white matter (WM) for intact myelin basic protein (MBP), degraded MBP, the presence of myelin lipid and for PAS staining. The relationship of myelin degradation and axonal injury was also assessed. RESULTS Brains from patients with AD had significant loss of intact MBP, and an increase in degraded MBP in periventricular WM adjacent to a denuded ependymal layer. In regions of myelin degradation, vesicles were identified that stained positive for degraded MBP, myelin lipid, and neurofilament but not for intact MBP. Most vesicles stained for PAS, a corpora amylacea marker. The vesicles were significantly more abundant in the periventricular WM of AD patients compared to controls (44.5 ± 11.0 versus 1.7 ± 1.1, p=0.02). CONCLUSION In AD patients degraded MBP is associated in part with vesicles particularly in periventricular WM that is adjacent to areas of ependymal injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Frank R Sharp
- University of California at Davis, M.I.N.D. Institute - Room 2415, 2805 50th Street, Sacramento, CA 95817, USA.
| |
Collapse
|
7
|
Neonatal hyperoxia exposure disrupts axon-oligodendrocyte integrity in the subcortical white matter. J Neurosci 2013; 33:8990-9002. [PMID: 23699510 DOI: 10.1523/jneurosci.5528-12.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pathological mechanisms underlying neurological deficits observed in individuals born prematurely are not completely understood. A common form of injury in the preterm population is periventricular white matter injury (PWMI), a pathology associated with impaired brain development. To mitigate or eliminate PWMI, there is an urgent need to understand the pathological mechanism(s) involved on a neurobiological, structural, and functional level. Recent clinical data suggest that a percentage of premature infants experience relative hyperoxia. Using a hyperoxic model of premature brain injury, we have previously demonstrated that neonatal hyperoxia exposure in the mouse disrupts development of the white matter (WM) by delaying the maturation of the oligodendroglial lineage. In the present study, we address the question of how hyperoxia-induced alterations in WM development affect overall WM integrity and axonal function. We show that neonatal hyperoxia causes ultrastructural changes, including: myelination abnormalities (i.e., reduced myelin thickness and abnormal extramyelin loops) and axonopathy (i.e., altered neurofilament phosphorylation, paranodal defects, and changes in node of Ranvier number and structure). This disruption of axon-oligodendrocyte integrity results in the lasting impairment of conduction properties in the adult WM. Understanding the pathology of premature PWMI injury will allow for the development of interventional strategies to preserve WM integrity and function.
Collapse
|
8
|
Hedden T, Mormino EC, Amariglio RE, Younger AP, Schultz AP, Becker JA, Buckner RL, Johnson KA, Sperling RA, Rentz DM. Cognitive profile of amyloid burden and white matter hyperintensities in cognitively normal older adults. J Neurosci 2012; 32:16233-42. [PMID: 23152607 PMCID: PMC3523110 DOI: 10.1523/jneurosci.2462-12.2012] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/10/2012] [Accepted: 09/17/2012] [Indexed: 11/21/2022] Open
Abstract
Amyloid burden and white matter hyperintensities (WMH) are two common markers of neurodegeneration present in advanced aging. Each represents a potential early indicator of an age-related neurological disorder that impacts cognition. The presence of amyloid is observed in a substantial subset of cognitively normal older adults, but the literature remains equivocal regarding whether amyloid in nondemented populations is deleterious to cognition. Similarly, WMH are detected in many nondemented older adults and there is a body of evidence indicating that WMH are associated with decreased executive function and other cognitive domains. The current study investigated amyloid burden and WMH in clinically normal older adult humans aged 65-86 (N = 168) and examined each biomarker's relation with cognitive domains of episodic memory, executive function, and speed of processing. Factors for each domain were derived from a neuropsychological battery on a theoretical basis without reference to the relation between cognition and the biomarkers. Amyloid burden and WMH were not correlated with one another. Age was associated with lower performance in all cognitive domains, while higher estimated verbal intelligence was associated with higher performance in all domains. Hypothesis-driven tests revealed that amyloid burden and WMH had distinct cognitive profiles, with amyloid burden having a specific influence on episodic memory and WMH primarily associated with executive function but having broad (but lesser) effects on the other domains. These findings suggest that even before clinical impairment, amyloid burden and WMH likely represent neuropathological cascades with distinct etiologies and dissociable influences on cognition.
Collapse
Affiliation(s)
- Trey Hedden
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
A novel method for the rapid determination of beta-amyloid toxicity on acute hippocampal slices using MTT and LDH assays. Brain Res Bull 2012; 87:521-5. [DOI: 10.1016/j.brainresbull.2012.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 01/31/2023]
|
10
|
Frota de Almeida MN, de Siqueira Mendes FDCC, Gurgel Felício AP, Falsoni M, Ferreira de Andrade ML, Bento-Torres J, da Costa Vasconcelos PF, Perry VH, Picanço-Diniz CW, Kronka Sosthenes MC. Spatial memory decline after masticatory deprivation and aging is associated with altered laminar distribution of CA1 astrocytes. BMC Neurosci 2012; 13:23. [PMID: 22376223 PMCID: PMC3355053 DOI: 10.1186/1471-2202-13-23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/29/2012] [Indexed: 01/27/2023] Open
Abstract
Background Chewing imbalances are associated with neurodegeneration and are risk factors for senile dementia in humans and memory deficits in experimental animals. We investigated the impact of long-term reduced mastication on spatial memory in young, mature and aged female albino Swiss mice by stereological analysis of the laminar distribution of CA1 astrocytes. A soft diet (SD) was used to reduce mastication in the experimental group, whereas the control group was fed a hard diet (HD). Assays were performed in 3-, 6- and 18-month-old SD and HD mice. Results Eating a SD variably affected the number of astrocytes in the CA1 hippocampal field, and SD mice performed worse on water maze memory tests than HD mice. Three-month-old mice in both groups could remember/find a hidden platform in the water maze. However, 6-month-old SD mice, but not HD mice, exhibited significant spatial memory dysfunction. Both SD and HD 18-month-old mice showed spatial memory decline. Older SD mice had astrocyte hyperplasia in the strata pyramidale and oriens compared to 6-month-old mice. Aging induced astrocyte hypoplasia at 18 months in the lacunosum-moleculare layer of HD mice. Conclusions Taken together, these results suggest that the impaired spatial learning and memory induced by masticatory deprivation and aging may be associated with altered astrocyte laminar distribution and number in the CA1 hippocampal field. The underlying molecular mechanisms are unknown and merit further investigation.
Collapse
Affiliation(s)
- Marina Negrão Frota de Almeida
- Universidade Federal do Pará-UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Belém, PA, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li L, Wang Y, Yan J, Chen Y, Zhou R, Yi X, Shi Q, Zhou H. Clinical predictors of cognitive decline in patients with mild cognitive impairment: the Chongqing aging study. J Neurol 2011; 259:1303-11. [PMID: 22186849 DOI: 10.1007/s00415-011-6342-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/18/2011] [Accepted: 11/24/2011] [Indexed: 11/26/2022]
Abstract
Mild cognitive impairment (MCI) is considered as the early stage of dementia which currently has no effective treatments. Reducing progression of cognitive decline at the MCI stage could be an important strategy for preventing conversion to dementia. The goal of this work was to screen for clinical predictors indicating the prognosis of MCI comprehensively; therefore, we assumed vascular risk factors (VRFs), carotid stenosis, and white matter changes (WMC) to be independent predictors. A total of 257 patients with MCI underwent collection of VRF information, neuropsychological evaluation, computed tomography angiography (CTA) to investigate carotid stenosis, and magnetic resonance imaging (MRI) to identify severity of WMC. After a 3-year follow-up period, the neuropsychological evaluation, CTA, and MRI were repeated to assess the progression of cognitive decline, carotid stenosis, and WMC. The conversion rate from MCI to dementia was 11.65% per year, and the conversion rate from MCI to Alzheimer's disease was 7.05% per year in our cohort. Cognitive decline (in terms of changes in Mini Mental State Examination scores) was associated with diabetes mellitus (p = 0.004), baseline WMC severity (p < 0.001), baseline carotid stenosis (p < 0.001), and WMC severity change (p < 0.001). Besides, diabetes, baseline WMC severity, baseline moderate-to-severe carotid stenosis, and carotid stenosis change during follow-up were predictors of conversion from MCI to dementia. Given the potential clinical predictors, our findings could imply that controlling blood glucose, removing carotid stenosis, and improving cerebral perfusion could be effective measures to delay cognitive decline in patients with MCI and prevent conversion from MCI to dementia.
Collapse
Affiliation(s)
- Ling Li
- Department of Neurology, Third Military Medical University, Daping, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|