1
|
Maimaris G, Christodoulou A, Santama N, Lederer CW. Regulation of ER Composition and Extent, and Putative Action in Protein Networks by ER/NE Protein TMEM147. Int J Mol Sci 2021; 22:10231. [PMID: 34638576 PMCID: PMC8508377 DOI: 10.3390/ijms221910231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/03/2023] Open
Abstract
Nuclear envelope (NE) and endoplasmic reticulum (ER) collaborate to control a multitude of nuclear and cytoplasmic actions. In this context, the transmembrane protein TMEM147 localizes to both NE and ER, and through direct and indirect interactions regulates processes as varied as production and transport of multipass membrane proteins, neuronal signaling, nuclear-shape, lamina and chromatin dynamics and cholesterol synthesis. Aiming to delineate the emerging multifunctionality of TMEM147 more comprehensively, we set as objectives, first, to assess potentially more fundamental effects of TMEM147 on the ER and, second, to identify significantly TMEM147-associated cell-wide protein networks and pathways. Quantifying curved and flat ER markers RTN4 and CLIMP63/CKAP4, respectively, we found that TMEM147 silencing causes area and intensity increases for both RTN4 and CLIMP63, and the ER in general, with a profound shift toward flat areas, concurrent with reduction in DNA condensation. Protein network and pathway analyses based on comprehensive compilation of TMEM147 interactors, targets and co-factors then served to manifest novel and established roles for TMEM147. Thus, algorithmically simplified significant pathways reflect TMEM147 function in ribosome binding, oxidoreductase activity, G protein-coupled receptor activity and transmembrane transport, while analysis of protein factors and networks identifies hub proteins and corresponding pathways as potential targets of TMEM147 action and of future functional studies.
Collapse
Affiliation(s)
- Giannis Maimaris
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.M.); (A.C.); (N.S.)
| | - Andri Christodoulou
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.M.); (A.C.); (N.S.)
| | - Niovi Santama
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.M.); (A.C.); (N.S.)
| | - Carsten Werner Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| |
Collapse
|
2
|
Li YL, Cheng XN, Lu T, Shao M, Shi DL. Syne2b/Nesprin-2 Is Required for Actin Organization and Epithelial Integrity During Epiboly Movement in Zebrafish. Front Cell Dev Biol 2021; 9:671887. [PMID: 34222245 PMCID: PMC8248263 DOI: 10.3389/fcell.2021.671887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022] Open
Abstract
Syne2b/nesprin-2 is a giant protein implicated in tethering the nucleus to the cytoskeleton and plays an important role in maintaining cellular architecture. Epiboly is a conserved morphogenetic movement that involves extensive spreading and thinning of the epithelial blastoderm to shape the embryo and organize the three germ layers. Dynamic cytoskeletal organization is critical for this process, but how it is regulated remains elusive. Here we generated a zebrafish syne2b mutant line and analyzed the effects of impaired Syne2b function during early development. By CRISPR/Cas9-mediated genome editing, we obtained a large deletion in the syne2b locus, predicted to cause truncation of the nuclear localization KASH domain in the translated protein. Maternal and zygotic syne2b embryos showed delayed epiboly initiation and progression without defects in embryonic patterning. Remarkably, disruption of Syne2b function severely impaired cytoskeletal organization across the embryo, leading to aberrant clustering of F-actin at multiple cell contact regions and abnormal cell shape changes. These caused disintegration of the epithelial blastoderm before the end of gastrulation in most severely affected embryos. Moreover, the migration of yolk nuclear syncytium also became defective, likely due to disorganized cytoskeletal networks at the blastoderm margin and in the yolk cell. These findings demonstrate an essential function of Syne2b in maintaining cytoskeletal architecture and epithelial integrity during epiboly movement.
Collapse
Affiliation(s)
- Yu-Long Li
- School of Life Sciences, Shandong University, Qingdao, China
| | | | - Tong Lu
- School of Life Sciences, Shandong University, Qingdao, China
| | - Ming Shao
- School of Life Sciences, Shandong University, Qingdao, China
| | - De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Laboratory of Developmental Biology, CNRS-UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France
| |
Collapse
|
3
|
Lim SM, Cruz VE, Antoku S, Gundersen GG, Schwartz TU. Structures of FHOD1-Nesprin1/2 complexes reveal alternate binding modes for the FH3 domain of formins. Structure 2021; 29:540-552.e5. [PMID: 33472039 DOI: 10.1016/j.str.2020.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
The nuclear position in eukaryotes is controlled by a nucleo-cytoskeletal network, critical in cell differentiation, division, and movement. Forces are transmitted through conserved Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes that traverse the nuclear envelope and engage on either side of the membrane with diverse binding partners. Nesprin-2-giant (Nes2G), a LINC element in the outer nuclear membrane, connects to the actin directly as well as through FHOD1, a formin primarily involved in actin bundling. Here, we report the crystal structure of Nes2G bound to FHOD1 and show that the presumed G-binding domain of FHOD1 is rather a spectrin repeat (SR) binding enhancer for the neighboring FH3 domain. The structure reveals that SR binding by FHOD1 is likely not regulated by the diaphanous-autoregulatory domain helix of FHOD1. Finally, we establish that Nes1G also has one FHOD1 binding SR, indicating that these abundant, giant Nesprins have overlapping functions in actin-bundle recruitment for nuclear movement.
Collapse
Affiliation(s)
- Sing Mei Lim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Victor E Cruz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susumu Antoku
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Song L, Rijal R, Karow M, Stumpf M, Hahn O, Park L, Insall R, Schröder R, Hofmann A, Clemen CS, Eichinger L. Expression of N471D strumpellin leads to defects in the endolysosomal system. Dis Model Mech 2018; 11:dmm033449. [PMID: 30061306 PMCID: PMC6177004 DOI: 10.1242/dmm.033449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are genetically diverse and clinically characterised by lower limb weakness and spasticity. The N471D and several other point mutations of human strumpellin (Str; also known as WASHC5), a member of the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complex, have been shown to cause a form of HSP known as spastic paraplegia 8 (SPG8). To investigate the molecular functions of wild-type (WT) and N417D Str, we generated Dictyostelium Str- cells and ectopically expressed StrWT-GFP or StrN471D-GFP in Str- and WT cells. Overexpression of both proteins apparently caused a defect in cell division, as we observed a clear increase in multinucleate cells. Real-time PCR analyses revealed no transcriptional changes in WASH complex subunits in Str- cells, but western blots showed a twofold decrease in the SWIP subunit. GFP-trap experiments in conjunction with mass-spectrometric analysis revealed many previously known, as well as new, Str-interacting proteins, and also proteins that no longer bind to StrN471D At the cellular level, Str- cells displayed defects in cell growth, phagocytosis, macropinocytosis, exocytosis and lysosomal function. Expression of StrWT-GFP in Str- cells rescued all observed defects. In contrast, expression of StrN471D-GFP could not rescue lysosome morphology and exocytosis of indigestible material. Our results underscore a key role for the WASH complex and its core subunit, Str, in the endolysosomal system, and highlight the fundamental importance of the Str N471 residue for maintaining lysosome morphology and dynamics. Our data indicate that the SPG8-causing N471D mutation leads to a partial loss of Str function in the endolysosomal system. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lin Song
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ramesh Rijal
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Department of Biology, Texas A&M University, College Station, TX 3258, USA
| | - Malte Karow
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Maria Stumpf
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Oliver Hahn
- Max Planck Institute for Biology of Ageing, Biological Mechanisms of Ageing, 50931 Cologne, Germany
| | - Laura Park
- CR-UK Beatson Institute, Institute of Cancer Sciences, Glasgow University, Glasgow G12 8QQ, UK
| | - Robert Insall
- CR-UK Beatson Institute, Institute of Cancer Sciences, Glasgow University, Glasgow G12 8QQ, UK
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, N75 Don Young Road, Nathan, QLD 4111, Australia
- Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC 3030, Australia
| | - Christoph S Clemen
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Ludwig Eichinger
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
5
|
Guo T, Fang Y. Functional organization and dynamics of the cell nucleus. FRONTIERS IN PLANT SCIENCE 2014; 5:378. [PMID: 25161658 PMCID: PMC4130368 DOI: 10.3389/fpls.2014.00378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/16/2014] [Indexed: 05/16/2023]
Abstract
The eukaryotic cell nucleus enclosed within the nuclear envelope harbors organized chromatin territories and various nuclear bodies as sub-nuclear compartments. This higher-order nuclear organization provides a unique environment to regulate the genome during replication, transcription, maintenance, and other processes. In this review, we focus on the plant four-dimensional nuclear organization, its dynamics and function in response to signals during development or stress.
Collapse
Affiliation(s)
| | - Yuda Fang
- *Correspondence: Yuda Fang, National key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China e-mail:
| |
Collapse
|
6
|
Dammer EB, Duong DM, Diner I, Gearing M, Feng Y, Lah JJ, Levey AI, Seyfried NT. Neuron enriched nuclear proteome isolated from human brain. J Proteome Res 2013; 12:3193-206. [PMID: 23768213 DOI: 10.1021/pr400246t] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brain consists of diverse cell types including neurons, astrocytes, oligodendrocytes, and microglia. The isolation of nuclei from these distinct cell populations provides an opportunity to identify cell-type-specific nuclear proteins, histone modifications, and regulation networks that are altered with normal brain aging or neurodegenerative disease. In this study, we used a method by which intact neuronal and non-neuronal nuclei were purified from human post-mortem brain employing a modification of fluorescence activated cell sorting (FACS) termed fluorescence activated nuclei sorting (FANS). An antibody against NeuN, a neuron specific splicing factor, was used to isolate neuronal nuclei. Utilizing mass spectrometry (MS) based label-free quantitative proteomics, we identified 1755 proteins from sorted NeuN-positive and negative nuclear extracts. Approximately 20% of these proteins were significantly enriched or depleted in neuronal versus non-neuronal populations. Immunoblots of primary cultured rat neuron, astrocyte, and oligodendrocyte extracts confirmed that distinct members of the major nucleocytoplasmic structural linkage complex (LINC), nesprin-1 and nesprin-3, were differentially enriched in neurons and astrocytes, respectively. These comparative proteomic data sets also reveal a number of transcription and splicing factors that are selectively enriched in a cell-type-specific manner in human brain.
Collapse
Affiliation(s)
- Eric B Dammer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Rothballer A, Kutay U. The diverse functional LINCs of the nuclear envelope to the cytoskeleton and chromatin. Chromosoma 2013; 122:415-29. [PMID: 23736899 PMCID: PMC3777164 DOI: 10.1007/s00412-013-0417-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/30/2022]
Abstract
The nuclear envelope (NE) is connected to the different types of cytoskeletal elements by linker of nucleoskeleton and cytoskeleton (LINC) complexes. LINC complexes exist from yeast to humans, and have preserved their general architecture throughout evolution. They are composed of SUN and KASH domain proteins of the inner and the outer nuclear membrane, respectively. These SUN–KASH bridges are used for the transmission of forces across the NE and support diverse biological processes. Here, we review the function of SUN and KASH domain proteins in various unicellular and multicellular species. Specifically, we discuss their influence on nuclear morphology and cytoskeletal organization. Further, emphasis is given on the role of LINC complexes in nuclear anchorage and migration as well as in genome organization.
Collapse
Affiliation(s)
- Andrea Rothballer
- Department of Biology, Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| |
Collapse
|
8
|
Abstract
The fifth U.K. meeting on nuclear envelope disease and chromatin brought together international experts from across the field of nuclear envelope biology to discuss the advancements in a class of tissue-specific degenerative diseases called the laminopathies. Clinically, these range from relatively mild fat-wasting disorders to the severe premature aging condition known as Hutchinson-Gilford progeria syndrome. Since the first association of the nuclear envelope with human inherited disease in 1994, there has been an exponential increase in an unexpected variety of functions associated with nuclear envelope proteins, ranging from mechanical support and nucleocytoskeletal connections to regulation of chromatin organization and gene expression. This Biochemical Society Focused Meeting reinforced the functional complexity of nuclear-associated diseases, revealed new avenues to be investigated and highlighted the signalling pathways suitable as therapeutic targets.
Collapse
|
9
|
Abstract
The LINC (linker of nucleoskeleton and cytoskeleton) complex is a proposed mechanical link tethering the nucleo- and cyto-skeleton via the NE (nuclear envelope). The LINC components emerin, lamin A/C, SUN1, SUN2, nesprin-1 and nesprin-2 interact with each other at the NE and also with other binding partners including actin filaments and B-type lamins. Besides the mechanostructural functions, the LINC complex is also involved in signalling pathways and gene regulation. Emerin was the first LINC component associated with a human disease, namely EDMD (Emery-Dreifuss muscular dystrophy). Later on, other components of the LINC complex, such as lamins A/C and small isoforms of nesprin-1 and nesprin-2, were found to be associated with EDMD, reflecting a genetic heterogeneity that has not been resolved so far. Only approximately 46% of the EDMD patients can be linked to genes of LINC and non-LINC components, pointing to further genes involved in the pathology of EDMD. Obvious candidates are the LINC proteins SUN1 and SUN2. Recently, screening of binding partners of LINC components as candidates identified LUMA (TMEM43), encoding a binding partner of emerin and lamins, as a gene involved in atypical EDMD. Nevertheless, such mutations contribute only to a very small fraction of EDMD patients. EDMD-causing mutations in STA/EMD (encoding emerin) that disrupt emerin binding to Btf (Bcl-2-associated transcription factor), GCL (germ cell-less) and BAF (barrier to autointegration factor) provide the first glimpses into LINC being involved in gene regulation and thus opening new avenues for functional studies. Thus the association of LINC with human disease provides tools for understanding its functions within the cell.
Collapse
|