1
|
Ma L, Haile ZM, Sabbadini S, Mezzetti B, Negrini F, Baraldi E. Functional characterization of MANNOSE-BINDING LECTIN 1, a G-type lectin gene family member, in response to fungal pathogens of strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:149-161. [PMID: 36219205 PMCID: PMC9786840 DOI: 10.1093/jxb/erac396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The mannose-binding lectin gene MANNOSE-BINDING LECTIN 1 (MBL1) is a member of the G-type lectin family and is involved in defense in strawberry (Fragaria × ananassa). Genome-wide identification of the G-type lectin family was carried out in woodland strawberry, F. vesca, and 133 G-lectin genes were found. Their expression profiles were retrieved from available databases and indicated that many are actively expressed during plant development or interaction with pathogens. We selected MBL1 for further investigation and generated stable transgenic FaMBL1-overexpressing plants of F. ×ananassa to examine the role of this gene in defense. Plants were selected and evaluated for their contents of disease-related phytohormones and their reaction to biotic stresses, and this revealed that jasmonic acid decreased in the overexpressing lines compared with the wild-type (WT). Petioles of the overexpressing lines inoculated with Colletotrichum fioriniae had lower disease incidence than the WT, and leaves of these lines challenged by Botrytis cinerea showed significantly smaller lesion diameters than the WT and higher expression of CLASS II CHITINASE 2-1. Our results indicate that FaMBL1 plays important roles in strawberry response to fungal diseases caused by C. fioriniae and B. cinerea.
Collapse
Affiliation(s)
- Lijing Ma
- Department of Agricultural and Food Science, DISTAL, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Zeraye Mehari Haile
- Department of Agricultural and Food Science, DISTAL, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Plant Protection Research Division of Melkasa Agricultural Research Center, Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | | |
Collapse
|
2
|
Lipopolysaccharide O-antigen molecular and supramolecular modifications of plant root microbiota are pivotal for host recognition. Carbohydr Polym 2022; 277:118839. [PMID: 34893256 DOI: 10.1016/j.carbpol.2021.118839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022]
Abstract
Lipopolysaccharides, the major outer membrane components of Gram-negative bacteria, are crucial actors of the host-microbial dialogue. They can contribute to the establishment of either symbiosis or bacterial virulence, depending on the bacterial lifestyle. Plant microbiota shows great complexity, promotes plant health and growth and assures protection from pathogens. How plants perceive LPS from plant-associated bacteria and discriminate between beneficial and pathogenic microbes is an open and urgent question. Here, we report on the structure, conformation, membrane properties and immune recognition of LPS isolated from the Arabidopsis thaliana root microbiota member Herbaspirillum sp. Root189. The LPS consists of an O-methylated and variously acetylated D-rhamnose containing polysaccharide with a rather hydrophobic surface. Plant immunology studies in A. thaliana demonstrate that the native acetylated O-antigen shields the LPS from immune recognition whereas the O-deacylated one does not. These findings highlight the role of Herbaspirillum LPS within plant-microbial crosstalk, and how O-antigen modifications influence membrane properties and modulate LPS host recognition.
Collapse
|
3
|
Peterson SB, Bertolli SK, Mougous JD. The Central Role of Interbacterial Antagonism in Bacterial Life. Curr Biol 2021; 30:R1203-R1214. [PMID: 33022265 DOI: 10.1016/j.cub.2020.06.103] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of bacteria interacting with their environment has historically centered on strategies for obtaining nutrients and resisting abiotic stresses. We argue this focus has deemphasized a third facet of bacterial life that is equally central to their existence: namely, the threat to survival posed by antagonizing bacteria. The diversity and ubiquity of interbacterial antagonism pathways is becoming increasingly apparent, and the insidious manner by which interbacterial toxins disarm their targets emphasizes the highly evolved nature of these processes. Studies examining the role of antagonism in natural communities reveal it can serve many functions, from facilitating colonization of naïve habitats to maintaining bacterial community stability. The pervasiveness of antagonistic pathways is necessarily matched by an equally extensive array of defense strategies. These overlap with well characterized, central stress response pathways, highlighting the contribution of bacterial interactions to shaping cell physiology. In this review, we build the case for the ubiquity and importance of interbacterial antagonism.
Collapse
Affiliation(s)
- S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Savannah K Bertolli
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Xu R, Adam L, Chapados J, Soliman A, Daayf F, Tambong JT. MinION Nanopore-based detection of Clavibacter nebraskensis, the corn Goss's wilt pathogen, and bacteriomic profiling of necrotic lesions of naturally-infected leaf samples. PLoS One 2021; 16:e0245333. [PMID: 33481876 PMCID: PMC7822522 DOI: 10.1371/journal.pone.0245333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/28/2020] [Indexed: 01/17/2023] Open
Abstract
The Goss’s bacterial wilt pathogen, Clavibacter nebraskensis, of corn is a candidate A1 quarantine organism; and its recent re-emergence and spread in the USA and Canada is a potential biothreat to the crop. We developed and tested an amplicon-based Nanopore detection system for C. nebraskensis (Cn), targeting a purine permease gene. The sensitivity (1 pg) of this system in mock bacterial communities (MBCs) spiked with serially diluted DNA of C. nebraskensis NCPPB 2581T is comparable to that of real-time PCR. Average Nanopore reads increased exponentially from 125 (1pg) to about 6000 reads (1000 pg) after a 3-hr run-time, with 99.0% of the reads accurately assigned to C. nebraskensis. Three run-times were used to process control MBCs, Cn-spiked MBCs, diseased and healthy leaf samples. The mean Nanopore reads doubled as the run-time is increased from 3 to 6 hrs while from 6 to 12 hrs, a 20% increment was recorded in all treatments. Cn-spiked MBCs and diseased corn leaf samples averaged read counts of 5,100, 11,000 and 14,000 for the respective run-times, with 99.8% of the reads taxonomically identified as C. nebraskensis. The control MBCs and healthy leaf samples had 47 and 14 Nanopore reads, respectively. 16S rRNA bacteriomic profiles showed that Sphingomonas (22.7%) and Clavibacter (21.2%) were dominant in diseased samples while Pseudomonas had only 3.5% relative abundance. In non-symptomatic leaf samples, however, Pseudomonas (20.0%) was dominant with Clavibacter at 0.08% relative abundance. This discrepancy in Pseudomonas abundance in the samples was corroborated by qPCR using EvaGreen chemistry. Our work outlines a new useful tool for diagnosis of the Goss’s bacterial wilt disease; and provides the first insight on Pseudomonas community dynamics in necrotic leaf lesions.
Collapse
Affiliation(s)
- Renlin Xu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Lorne Adam
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Julie Chapados
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Atta Soliman
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James T. Tambong
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
5
|
Rooney WM, Chai R, Milner JJ, Walker D. Bacteriocins Targeting Gram-Negative Phytopathogenic Bacteria: Plantibiotics of the Future. Front Microbiol 2020; 11:575981. [PMID: 33042091 PMCID: PMC7530242 DOI: 10.3389/fmicb.2020.575981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Gram-negative phytopathogenic bacteria are a significant threat to food crops. These microbial invaders are responsible for a plethora of plant diseases and can be responsible for devastating losses in crops such as tomatoes, peppers, potatoes, olives, and rice. Current disease management strategies to mitigate yield losses involve the application of chemicals which are often harmful to both human health and the environment. Bacteriocins are small proteinaceous antibiotics produced by bacteria to kill closely related bacteria and thereby establish dominance within a niche. They potentially represent a safer alternative to chemicals when used in the field. Bacteriocins typically show a high degree of selectivity toward their targets with no off-target effects. This review outlines the current state of research on bacteriocins active against Gram-negative phytopathogenic bacteria. Furthermore, we will examine the feasibility of weaponizing bacteriocins for use as a treatment for bacterial plant diseases.
Collapse
Affiliation(s)
- William M. Rooney
- Plant Science Group, School of Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ray Chai
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Joel J. Milner
- Plant Science Group, School of Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Walker
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Victorio-De Los Santos M, Vibanco-Pérez N, Soto-Rodriguez S, Pereyra A, Zenteno E, Cano-Sánchez P. The B Subunit of PirAB vp Toxin Secreted from Vibrio parahaemolyticus Causing AHPND Is an Amino Sugar Specific Lectin. Pathogens 2020; 9:E182. [PMID: 32138213 PMCID: PMC7157558 DOI: 10.3390/pathogens9030182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/17/2020] [Accepted: 02/29/2020] [Indexed: 11/26/2022] Open
Abstract
Vibrio parahaemolyticus (Vp) is the etiological agent of the acute hepatopancreatic necrosis disease (AHPND) in Penaeus vannamei shrimp. Vp possesses a 63-70 kb conjugative plasmid that encodes the binary toxin PirAvp/PirBvp. The 250 kDa PirABvp complex was purified by affinity chromatography with galactose-sepharose 4B and on a stroma from glutaraldehyde-fixed rat erythrocytes column, as a heterotetramer of PirAvp and PirBvp subunits. In addition, recombinant pirB (rPirBvp) and pirA (rPirAvp) were obtained. The homogeneity of the purified protein was determined by SDS-PAGE analysis, and the yield of protein was 488 ng/100 μg of total protein of extracellular products. The PirABvp complex and the rPirBvp showed hemagglutinating activity toward rat erythrocytes. The rPirAvp showed no hemagglutinating capacity toward the animal red cells tested. Among different mono and disaccharides tested, only GalNH2 and GlcNH2 were able to inhibit hemagglutination of the PirABvp complex and the rPirBvp. Glycoproteins showed inhibitory specificity, and fetuin was the glycoprotein that showed the highest inhibition. Other glycoproteins, such as mucin, and glycosaminoglycans, such as heparin, also inhibited the activity. Desialylation of erythrocytes enhanced the hemagglutinating activity. This confirms that Gal or Gal (β1,4) GlcNAc are the main ligands for PirABvp. The agglutinating activity of the PirABvp complex and the rPirBvp is not dependent on cations, because addition of Mg2+ or Ca2+ showed no effect on the protein capacity. Our results strongly suggest that the PirBvp subunit is a lectin, which is part of the PirA/PirBvp complex, and it seems to participate in bacterial pathogenicity.
Collapse
Affiliation(s)
- Marcelo Victorio-De Los Santos
- Laboratorio de Bacteriología. Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad de Acuacultura y Manejo Ambiental, Av. Sábalo-Cerritos S/N A.P. 711, Mazatlán, Sinaloa 82112, Mexico
- Laboratorio de Investigación en Biología Molecular e Inmunología, Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de la Cultura, Tepic, Nayarit 63190, Mexico
| | - Norberto Vibanco-Pérez
- Laboratorio de Investigación en Biología Molecular e Inmunología, Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de la Cultura, Tepic, Nayarit 63190, Mexico
| | - Sonia Soto-Rodriguez
- Laboratorio de Bacteriología. Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad de Acuacultura y Manejo Ambiental, Av. Sábalo-Cerritos S/N A.P. 711, Mazatlán, Sinaloa 82112, Mexico
| | - Ali Pereyra
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan, CDMX 04510, Mexico; (A.P.); (E.Z.)
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan, CDMX 04510, Mexico; (A.P.); (E.Z.)
| | - Patricia Cano-Sánchez
- Laboratorio de Biología Molecular, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan, CDMX 04510, Mexico;
| |
Collapse
|
7
|
MacNair CR, Tsai CN, Brown ED. Creative targeting of the Gram-negative outer membrane in antibiotic discovery. Ann N Y Acad Sci 2019; 1459:69-85. [PMID: 31762048 DOI: 10.1111/nyas.14280] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
The rising threat of multidrug-resistant Gram-negative bacteria is exacerbated by the scarcity of new antibiotics in the development pipeline. Permeability through the outer membrane remains one of the leading hurdles in discovery efforts. However, the essentiality of a robust outer membrane makes itself an intriguing antimicrobial target. Herein, we review drug discovery efforts targeting the outer membrane and the prospective antimicrobial leads identified.
Collapse
Affiliation(s)
- Craig R MacNair
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Caressa N Tsai
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Eric D Brown
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Ghequire MGK, De Mot R. LlpB represents a second subclass of lectin-like bacteriocins. Microb Biotechnol 2019; 12:567-573. [PMID: 30702207 PMCID: PMC6465234 DOI: 10.1111/1751-7915.13373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriocins are secreted bacterial proteins that selectively kill related strains. Lectin-like bacteriocins are atypical bacteriocins not requiring a cognate immunity factor and have been primarily studied in Pseudomonas. These so-called LlpAs are composed of a tandem of B-lectin domains. One domain interacts with d-rhamnose residues in the common polysaccharide antigen of Pseudomonas lipopolysaccharide (LPS). The other lectin domain is crucial for interference with the outer membrane protein assembly machinery by interacting with surface-exposed loops of its central component BamA. Via genome mining, we identified a second subclass of Pseudomonas lectin-like proteins, termed LlpB, consisting of a single B-lectin domain. We show that these proteins also display bactericidal activity. Among LlpB-resistant transposon mutants of an LlpB-susceptible Pseudomonas strain, a major subset was hit in an acyltransferase gene, predicted to be involved in LPS core modification, hereby suggesting that LlpBs equally attach to LPS for surface anchoring. This indicates that LPS binding and target strain specificity are condensed in a single B-lectin domain. The identification of this second subclass of lectin-like bacteriocins further expands the toolbox of antibacterial warfare deployed by bacteria and holds potential for their integration in biotechnological applications.
Collapse
Affiliation(s)
- Maarten G. K. Ghequire
- Centre of Microbial and Plant GeneticsKU LeuvenKasteelpark Arenberg 20 bus 24603001HeverleeBelgium
| | - René De Mot
- Centre of Microbial and Plant GeneticsKU LeuvenKasteelpark Arenberg 20 bus 24603001HeverleeBelgium
| |
Collapse
|
9
|
Ghequire MGK, Öztürk B, De Mot R. Lectin-Like Bacteriocins. Front Microbiol 2018; 9:2706. [PMID: 30483232 PMCID: PMC6240691 DOI: 10.3389/fmicb.2018.02706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Bacteria produce a diverse array of antagonistic compounds to restrict growth of microbial rivals. Contributing to this warfare are bacteriocins: secreted antibacterial peptides, proteins and multi-protein complexes. These compounds typically eliminate competitors closely related to the producer. Lectin-like bacteriocins (LlpAs) constitute a distinct class of such proteins, produced by Pseudomonas as well as some other proteobacterial genera. LlpAs share a common architecture consisting of two B-lectin domains, followed by a short carboxy-terminal extension. Two surface-exposed moieties on susceptible Pseudomonas cells are targeted by the respective lectin modules. The carboxy-terminal domain binds D-rhamnose residues present in the lipopolysaccharide layer, whereas the amino-terminal domain interacts with a polymorphic external loop of the outer-membrane protein insertase BamA, hence determining selectivity. The absence of a toxin-immunity module as found in modular bacteriocins and other polymorphic toxin systems, hints toward a novel mode of killing initiated at the cellular surface, not requiring bacteriocin import. Despite significant progress in understanding the function of LlpAs, outstanding questions include the secretion machinery recruited by lectin-like bacteriocins for their release, as well as a better understanding of the environmental signals initiating their expression.
Collapse
Affiliation(s)
| | - Başak Öztürk
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Zhao Y, Jian Y, Liu Z, Liu H, Liu Q, Chen C, Li Z, Wang L, Huang HH, Zeng C. Network Analysis Reveals the Recognition Mechanism for Dimer Formation of Bulb-type Lectins. Sci Rep 2017; 7:2876. [PMID: 28588265 PMCID: PMC5460271 DOI: 10.1038/s41598-017-03003-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/20/2017] [Indexed: 12/26/2022] Open
Abstract
The bulb-type lectins are proteins consist of three sequential beta-sheet subdomains that bind to specific carbohydrates to perform certain biological functions. The active states of most bulb-type lectins are dimeric and it is thus important to elucidate the short- and long-range recognition mechanism for this dimer formation. To do so, we perform comparative sequence analysis for the single- and double-domain bulb-type lectins abundant in plant genomes. In contrast to the dimer complex of two single-domain lectins formed via protein-protein interactions, the double-domain lectin fuses two single-domain proteins into one protein with a short linker and requires only short-range interactions because its two single domains are always in close proximity. Sequence analysis demonstrates that the highly variable but coevolving polar residues at the interface of dimeric bulb-type lectins are largely absent in the double-domain bulb-type lectins. Moreover, network analysis on bulb-type lectin proteins show that these same polar residues have high closeness scores and thus serve as hubs with strong connections to all other residues. Taken together, we propose a potential mechanism for this lectin complex formation where coevolving polar residues of high closeness are responsible for long-range recognition.
Collapse
Affiliation(s)
- Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China.,Department of Physics, The George Washington University, Washington, DC, 20052, USA
| | - Yiren Jian
- Department of Physics, The George Washington University, Washington, DC, 20052, USA
| | - Zhichao Liu
- Department of Physics, The George Washington University, Washington, DC, 20052, USA
| | - Hang Liu
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Qin Liu
- School of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Chanyou Chen
- School of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Zhangyong Li
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Lu Wang
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - H Howie Huang
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Chen Zeng
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China. .,Department of Physics, The George Washington University, Washington, DC, 20052, USA. .,School of Life Sciences, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
11
|
Taylor ME, Drickamer K. Convergent and divergent mechanisms of sugar recognition across kingdoms. Curr Opin Struct Biol 2014; 28:14-22. [PMID: 25102772 PMCID: PMC4444583 DOI: 10.1016/j.sbi.2014.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/23/2014] [Accepted: 07/16/2014] [Indexed: 12/03/2022]
Abstract
Protein modules that bind specific oligosaccharides are found across all kingdoms of life from single-celled organisms to man. Different, overlapping and evolving designations for sugar-binding domains in proteins can sometimes obscure common features that often reflect convergent solutions to the problem of distinguishing sugars with closely similar structures and binding them with sufficient affinity to achieve biologically meaningful results. Structural and functional analysis has revealed striking parallels between protein domains with widely different structures and evolutionary histories that employ common solutions to the sugar recognition problem. Recent studies also demonstrate that domains descended from common ancestors through divergent evolution appear more widely across the kingdoms of life than had previously been recognized.
Collapse
Affiliation(s)
- Maureen E Taylor
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Kurt Drickamer
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom.
| |
Collapse
|
12
|
Ghequire MGK, Dingemans J, Pirnay JP, De Vos D, Cornelis P, De Mot R. O serotype-independent susceptibility of Pseudomonas aeruginosa to lectin-like pyocins. Microbiologyopen 2014; 3:875-84. [PMID: 25224846 PMCID: PMC4263511 DOI: 10.1002/mbo3.210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 11/08/2022] Open
Abstract
Lectin-like bacteriocins of the LlpA family, originally identified in plant-associated bacteria, are narrow-spectrum antibacterial proteins composed of two tandemly organized monocot mannose-binding lectin (MMBL) domains. The LlpA-like bacteriocin of Pseudomonas aeruginosa C1433, pyocin L1, lacks any similarity to known P. aeruginosa bacteriocins. The initial interaction of pyocin L1 with target cells is mediated by binding to d-rhamnose, present in the common polysaccharide antigen of lipopolysaccharides (LPS), but the actual cytotoxic mechanism is unknown. In this study, we characterized the activity range of pyocin L1 and two additional L pyocins revealed by genome mining, representing two highly diverged LlpA groups in P. aeruginosa. The recombinant proteins exhibit species-specific antagonistic activities down to nanomolar concentrations against clinical and environmental P. aeruginosa strains, including several multidrug-resistant isolates. The overlap in target strain spectrum between two close homologues of the pyocin L1 group is only minimal, contrasting with the considerable spectral redundancy of LlpA proteins reported for other Pseudomonas species. No correlation was found between L pyocin susceptibility and phylogenetic relatedness of P. aeruginosa isolates. Sensitive strains were retrieved in 13 out of 15 O serotypes tested, excluding the possibility that the highly variable and immunogenic O serotype antigen of the LPS coating would represent a dominant susceptibility-discriminating factor.
Collapse
Affiliation(s)
- Maarten G K Ghequire
- Centre of Microbial and Plant Genetics, University of Leuven, 3001, Heverlee, Belgium
| | | | | | | | | | | |
Collapse
|
13
|
Ghequire MGK, De Mot R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev 2014; 38:523-68. [PMID: 24923764 DOI: 10.1111/1574-6976.12079] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/05/2014] [Accepted: 05/16/2014] [Indexed: 12/26/2022] Open
Abstract
Members of the Pseudomonas genus produce diverse secondary metabolites affecting other bacteria, fungi or predating nematodes and protozoa but are also equipped with the capacity to secrete different types of ribosomally encoded toxic peptides and proteins, ranging from small microcins to large tailocins. Studies with the human pathogen Pseudomonas aeruginosa have revealed that effector proteins of type VI secretion systems are part of the antibacterial armamentarium deployed by pseudomonads. A novel class of antibacterial proteins with structural similarity to plant lectins was discovered by studying antagonism among plant-associated Pseudomonas strains. A genomic perspective on pseudomonad bacteriocinogeny shows that the modular architecture of S pyocins of P. aeruginosa is retained in a large diversified group of bacteriocins, most of which target DNA or RNA. Similar modularity is present in as yet poorly characterized Rhs (recombination hot spot) proteins and CDI (contact-dependent inhibition) proteins. Well-delimited domains for receptor recognition or cytotoxicity enable the design of chimeric toxins with novel functionalities, which has been applied successfully for S and R pyocins. Little is known regarding how these antibacterials are released and ultimately reach their targets. Other remaining issues concern the identification of environmental triggers activating these systems and assessment of their ecological impact in niches populated by pseudomonads.
Collapse
|
14
|
McCaughey LC, Grinter R, Josts I, Roszak AW, Waløen KI, Cogdell RJ, Milner J, Evans T, Kelly S, Tucker NP, Byron O, Smith B, Walker D. Lectin-like bacteriocins from Pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor. PLoS Pathog 2014; 10:e1003898. [PMID: 24516380 PMCID: PMC3916391 DOI: 10.1371/journal.ppat.1003898] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/10/2013] [Indexed: 11/24/2022] Open
Abstract
Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins. Due to rapidly increasing rates of antibiotic resistance observed among Gram-negative pathogens, such as Pseudomonas aeruginosa, there is an urgent requirement for novel approaches to the treatment of bacterial infections. Lectin-like bacteriocins are highly potent protein antibiotics that display an unusual ability to kill a select group of bacteria within a specific genus. In this work, we show how the lectin-like protein antibiotic, pyocin L1, can kill Pseudomonas aeruginosa with extraordinary potency through specific binding to the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide. The CPA is predominantly a homopolymer of the sugar d-rhamnose that although generally rare in nature is found frequently as a component of the lipopolysaccharide of members of the genus Pseudomonas. The targeting of d-rhamnose containing polysaccharides by pyocin L1 and a related lectin-like protein antibiotic, putidacin L1, explains the unusual genus- specific killing activity of the lectin-like bacteriocins. As we learn more about the link between changes to the microbiome and a range of chronic diseases there is a growing realisation that the ability to target specific bacterial pathogens while maintaining the normal gut flora is a desirable property for next generation antibiotics.
Collapse
Affiliation(s)
- Laura C. McCaughey
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rhys Grinter
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Inokentijs Josts
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Aleksander W. Roszak
- WestCHEM, School of Chemistry, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kai I. Waløen
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Richard J. Cogdell
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Joel Milner
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tom Evans
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sharon Kelly
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nicholas P. Tucker
- Strathclyde Institute for Pharmaceutical and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Olwyn Byron
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brian Smith
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Walker
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Araújo TS, Teixeira CS, Falcão MAP, Junior VRP, Santiago MQ, Benevides RG, Delatorre P, Martins JL, Alexandre-Moreira MS, Cavada BS, Campesatto EA, Rocha BAM. Anti-inflammatory and Antinociceptive Activity of Chitin-binding Lectin from Canna Limbata Seeds. Appl Biochem Biotechnol 2013; 171:1944-55. [DOI: 10.1007/s12010-013-0470-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/22/2013] [Indexed: 01/30/2023]
|
16
|
Ghequire MGK, De Canck E, Wattiau P, Van Winge I, Loris R, Coenye T, De Mot R. Antibacterial activity of a lectin-like Burkholderia cenocepacia protein. Microbiologyopen 2013; 2:566-75. [PMID: 23737242 PMCID: PMC3831624 DOI: 10.1002/mbo3.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/29/2013] [Accepted: 05/06/2013] [Indexed: 12/13/2022] Open
Abstract
Bacteriocins of the LlpA family have previously been characterized in the γ-proteobacteria Pseudomonas and Xanthomonas. These proteins are composed of two MMBL (monocot mannose-binding lectin) domains, a module predominantly and abundantly found in lectins from monocot plants. Genes encoding four different types of LlpA-like proteins were identified in genomes from strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. A selected recombinant LlpA-like protein from the human isolate Burkholderia cenocepacia AU1054 displayed narrow-spectrum genus-specific antibacterial activity, thus representing the first functionally characterized bacteriocin within this β-proteobacterial genus. Strain-specific killing was confined to other members of the Bcc, with mostly Burkholderia ambifaria strains being susceptible. In addition to killing planktonic cells, this bacteriocin also acted as an antibiofilm agent.
Collapse
Affiliation(s)
- Maarten G K Ghequire
- Centre of Microbial and Plant Genetics, University of Leuven, Kasteelpark Arenberg 20 box 2460, 3001, Heverlee-Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
A Biochemical Society Focused Meeting on bacteriocins was held at the University of Nottingham on 16-18 July 2012 to mark the retirement of Professor Richard James and honour a scientific career of more than 30 years devoted to an understanding of the biology of colicins, bacteriocins produced by Escherichia coli. This meeting was the third leg of a triumvirate of symposia that included meetings at the Île de Bendor, France, in 1991 and the University of East Anglia, Norwich, U.K., in 1998, focused on bringing together leading experts in basic and applied bacteriocin research. The symposium which attracted 70 attendees consisted of 18 invited speakers and 22 selected oral communications spread over four themes: (i) Role of bacteriocins in bacterial ecology, (ii) Mode of action of bacteriocins, (ii) Mechanisms of bacteriocin import across the cell envelope, and (iv) Biotechnological and biomedical applications of bacteriocins. Speakers and poster presenters travelled from around the world, including the U.S.A., Japan, Asia and Europe, to showcase the latest developments in their scientific research.
Collapse
|
18
|
Ghequire MGK, Garcia-Pino A, Lebbe EKM, Spaepen S, Loris R, De Mot R. Structural determinants for activity and specificity of the bacterial toxin LlpA. PLoS Pathog 2013; 9:e1003199. [PMID: 23468636 PMCID: PMC3585409 DOI: 10.1371/journal.ppat.1003199] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/03/2013] [Indexed: 11/21/2022] Open
Abstract
Lectin-like bacteriotoxic proteins, identified in several plant-associated bacteria, are able to selectively kill closely related species, including several phytopathogens, such as Pseudomonas syringae and Xanthomonas species, but so far their mode of action remains unrevealed. The crystal structure of LlpABW, the prototype lectin-like bacteriocin from Pseudomonas putida, reveals an architecture of two monocot mannose-binding lectin (MMBL) domains and a C-terminal β-hairpin extension. The C-terminal MMBL domain (C-domain) adopts a fold very similar to MMBL domains from plant lectins and contains a binding site for mannose and oligomannosides. Mutational analysis indicates that an intact sugar-binding pocket in this domain is crucial for bactericidal activity. The N-terminal MMBL domain (N-domain) adopts the same fold but is structurally more divergent and lacks a functional mannose-binding site. Differential activity of engineered N/C-domain chimers derived from two LlpA homologues with different killing spectra, disclosed that the N-domain determines target specificity. Apparently this bacteriocin is assembled from two structurally similar domains that evolved separately towards dedicated functions in target recognition and bacteriotoxicity. In their natural environments, microorganisms compete for space and nutrients, and a major strategy to assist in niche colonization is the deployment of antagonistic compounds directed at competitors, such as secondary metabolites (antibiotics) and antibacterial peptides or proteins (bacteriocins). The latter selectively kill closely related bacteria, which is also the case for members of the LlpA family. Here, we investigate the structure-function relationship for the prototype LlpABW from a saprophytic plant-associated Pseudomonas whose genus-specific target spectrum includes several phytopathogenic pseudomonads. By determining the 3D structure of this protein, we could assign LlpA to the so-called monocot mannose-binding lectin (MMBL) family, representing its first prokaryotic member, and also add a new type of protective function, as the eukaryotic MMBL members have been linked with antiviral, antifungal, nematicidal or insecticidal activities. For the protein containing two similarly folded domains, we constructed site-specific mutants affected in carbohydrate binding and domain chimers from LlpA homologues to show that mannose-specific sugar binding mediated by one domain is required for activity and that the other domain determines target strain specificity. The strategy that evolved for these bacteriocins is reminiscent of the one used by mammalian bactericidal proteins of the RegIII family that recruited a C-type lectin fold to kill bacteria.
Collapse
Affiliation(s)
- Maarten G K Ghequire
- Centre of Microbial and Plant Genetics, University of Leuven, Heverlee-Leuven, Belgium
| | | | | | | | | | | |
Collapse
|