1
|
An overview of 25 years of research on Thermococcus kodakarensis, a genetically versatile model organism for archaeal research. Folia Microbiol (Praha) 2019; 65:67-78. [PMID: 31286382 DOI: 10.1007/s12223-019-00730-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Almost 25 years have passed since the discovery of a planktonic, heterotrophic, hyperthermophilic archaeon named Thermococcus kodakarensis KOD1, previously known as Pyrococcus sp. KOD1, by Imanaka and coworkers. T. kodakarensis is one of the most studied archaeon in terms of metabolic pathways, available genomic resources, established genetic engineering techniques, reporter constructs, in vitro transcription/translation machinery, and gene expression/gene knockout systems. In addition to all these, ease of growth using various carbon sources makes it a facile archaeal model organism. Here, in this review, an attempt is made to reflect what we have learnt from this hyperthermophilic archaeon.
Collapse
|
2
|
Lu S, Zhang X, Chen K, Chen Z, Li Y, Qi Z, Shen Y, Li Z. The small subunit of DNA polymerase D (DP1) associates with GINS-GAN complex of the thermophilic archaea in Thermococcus sp. 4557. Microbiologyopen 2019; 8:e00848. [PMID: 31069963 PMCID: PMC6741145 DOI: 10.1002/mbo3.848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/27/2023] Open
Abstract
The eukaryotic GINS, Cdc45, and minichromosome maintenance proteins form an essential complex that moves with the DNA replication fork. The GINS protein complex has also been reported to associate with DNA polymerase. In archaea, the third domain of life, DNA polymerase D (PolD) is essential for DNA replication, and the genes encoding PolDs exist only in the genomes of archaea. The archaeal GAN (GINS‐associated nuclease) is believed to be a homolog of the eukaryotic Cdc45. In this study, we found that the Thermococcus sp. 4557 DP1 (small subunit of PolD) interacted with GINS15 in vitro, and the 3′–5′ exonuclease activity of DP1 was inhibited by GINS15. We also demonstrated that the GAN, GINS15, and DP1 proteins interact to form a complex adapting a GAN–GINS15–DP1 order. The results of this study imply that the complex constitutes a core of the DNA replisome in archaea.
Collapse
Affiliation(s)
- Shuhong Lu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.,Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Xuesong Zhang
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Kaiying Chen
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Zimeng Chen
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Yixiang Li
- School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Zhuo Li
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| |
Collapse
|
3
|
An updated structural classification of replicative DNA polymerases. Biochem Soc Trans 2019; 47:239-249. [PMID: 30647142 DOI: 10.1042/bst20180579] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
Replicative DNA polymerases are nano-machines essential to life, which have evolved the ability to copy the genome with high fidelity and high processivity. In contrast with cellular transcriptases and ribosome machines, which evolved by accretion of complexity from a conserved catalytic core, no replicative DNA polymerase is universally conserved. Strikingly, four different families of DNA polymerases have evolved to perform DNA replication in the three domains of life. In Bacteria, the genome is replicated by DNA polymerases belonging to the A- and C-families. In Eukarya, genomic DNA is copied mainly by three distinct replicative DNA polymerases, Polα, Polδ, and Polε, which all belong to the B-family. Matters are more complicated in Archaea, which contain an unusual D-family DNA polymerase (PolD) in addition to PolB, a B-family replicative DNA polymerase that is homologous to the eukaryotic ones. PolD is a heterodimeric DNA polymerase present in all Archaea discovered so far, except Crenarchaea. While PolD is an essential replicative DNA polymerase, it is often underrepresented in the literature when the diversity of DNA polymerases is discussed. Recent structural studies have shown that the structures of both polymerase and proofreading active sites of PolD differ from other structurally characterized DNA polymerases, thereby extending the repertoire of folds known to perform DNA replication. This review aims to provide an updated structural classification of all replicative DNAPs and discuss their evolutionary relationships, both regarding the DNA polymerase and proofreading active sites.
Collapse
|
4
|
Schermerhorn KM, Tanner N, Kelman Z, Gardner AF. High-temperature single-molecule kinetic analysis of thermophilic archaeal MCM helicases. Nucleic Acids Res 2016; 44:8764-8771. [PMID: 27382065 PMCID: PMC5062978 DOI: 10.1093/nar/gkw612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/27/2016] [Indexed: 12/22/2022] Open
Abstract
The minichromosome maintenance (MCM) complex is the replicative helicase responsible for unwinding DNA during archaeal and eukaryal genome replication. To mimic long helicase events in the cell, a high-temperature single-molecule assay was designed to quantitatively measure long-range DNA unwinding of individual DNA helicases from the archaeons Methanothermobacter thermautotrophicus (Mth) and Thermococcus sp. 9°N (9°N). Mth encodes a single MCM homolog while 9°N encodes three helicases. 9°N MCM3, the proposed replicative helicase, unwinds DNA at a faster rate compared to 9°N MCM2 and to Mth MCM. However, all three MCM proteins have similar processivities. The implications of these observations for DNA replication in archaea and the differences and similarities among helicases from different microorganisms are discussed. Development of the high-temperature single-molecule assay establishes a system to comprehensively study thermophilic replisomes and evolutionary links between archaeal, eukaryal, and bacterial replication systems.
Collapse
Affiliation(s)
| | | | - Zvi Kelman
- Biomolecular Labeling Laboratory, National Institute of Standards and Technology and Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | | |
Collapse
|
5
|
Lesion-Induced Mutation in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius and Its Avoidance by the Y-Family DNA Polymerase Dbh. Genetics 2015. [PMID: 26224736 DOI: 10.1534/genetics.115.178566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hyperthermophilic archaea offer certain advantages as models of genome replication, and Sulfolobus Y-family polymerases Dpo4 (S. solfataricus) and Dbh (S. acidocaldarius) have been studied intensively in vitro as biochemical and structural models of trans-lesion DNA synthesis (TLS). However, the genetic functions of these enzymes have not been determined in the native context of living cells. We developed the first quantitative genetic assays of replication past defined DNA lesions and error-prone motifs in Sulfolobus chromosomes and used them to measure the efficiency and accuracy of bypass in normal and dbh(-) strains of Sulfolobus acidocaldarius. Oligonucleotide-mediated transformation allowed low levels of abasic-site bypass to be observed in S. acidocaldarius and demonstrated that the local sequence context affected bypass specificity; in addition, most erroneous TLS did not require Dbh function. Applying the technique to another common lesion, 7,8-dihydro-8-oxo-deoxyguanosine (8-oxo-dG), revealed an antimutagenic role of Dbh. The efficiency and accuracy of replication past 8-oxo-dG was higher in the presence of Dbh, and up to 90% of the Dbh-dependent events inserted dC. A third set of assays, based on phenotypic reversion, showed no effect of Dbh function on spontaneous -1 frameshifts in mononucleotide tracts in vivo, despite the extremely frequent slippage at these motifs documented in vitro. Taken together, the results indicate that a primary genetic role of Dbh is to avoid mutations at 8-oxo-dG that occur when other Sulfolobus enzymes replicate past this lesion. The genetic evidence that Dbh is recruited to 8-oxo-dG raises questions regarding the mechanism of recruitment, since Sulfolobus spp. have eukaryotic-like replisomes but no ubiquitin.
Collapse
|
6
|
Abstract
DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.
Collapse
Affiliation(s)
- Lori M Kelman
- Program in Biotechnology, Montgomery College, Germantown, Maryland 20876;
| | | |
Collapse
|
7
|
Fei L, Tian S, Moysey R, Misca M, Barker JJ, Smith MA, McEwan PA, Pilka ES, Crawley L, Evans T, Sun D. Structural and biochemical studies of a moderately thermophilic exonuclease I from Methylocaldum szegediense. PLoS One 2015; 10:e0117470. [PMID: 25658953 PMCID: PMC4319927 DOI: 10.1371/journal.pone.0117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/25/2014] [Indexed: 11/18/2022] Open
Abstract
A novel exonuclease, designated as MszExo I, was cloned from Methylocaldum szegediense, a moderately thermophilic methanotroph. It specifically digests single-stranded DNA in the 3ʹ to 5ʹ direction. The protein is composed of 479 amino acids, and it shares 47% sequence identity with E. coli Exo I. The crystal structure of MszExo I was determined to a resolution of 2.2 Å and it aligns well with that of E. coli Exo I. Comparative studies revealed that MszExo I and E. coli Exo I have similar metal ion binding affinity and similar activity at mesophilic temperatures (25–47°C). However, the optimum working temperature of MszExo I is 10°C higher, and the melting temperature is more than 4°C higher as evaluated by both thermal inactivation assays and DSC measurements. More importantly, two thermal transitions during unfolding of MszExo I were monitored by DSC while only one transition was found in E. coli Exo I. Further analyses showed that magnesium ions not only confer structural stability, but also affect the unfolding of MszExo I. MszExo I is the first reported enzyme in the DNA repair systems of moderately thermophilic bacteria, which are predicted to have more efficient DNA repair systems than mesophilic ones.
Collapse
Affiliation(s)
- Li Fei
- New England Biolabs Shanghai R&D Center, Building 5, 917 Halei Road, Pudong District, Shanghai, China
| | - SiSi Tian
- New England Biolabs Shanghai R&D Center, Building 5, 917 Halei Road, Pudong District, Shanghai, China
| | - Ruth Moysey
- Oxford Nanopore Technologies Ltd., Edmund Cartwright House, 4 Robert Robinson Avenue Oxford Science Park, Oxford OX4, United Kingdom
| | - Mihaela Misca
- Oxford Nanopore Technologies Ltd., Edmund Cartwright House, 4 Robert Robinson Avenue Oxford Science Park, Oxford OX4, United Kingdom
| | - John J. Barker
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Myron A. Smith
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Paul A. McEwan
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Ewa S. Pilka
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Lauren Crawley
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Tom Evans
- New England Biolabs, 240 County Road, Ipswich, MA 01938–2723, United States of America
| | - Dapeng Sun
- New England Biolabs Shanghai R&D Center, Building 5, 917 Halei Road, Pudong District, Shanghai, China
- * E-mail:
| |
Collapse
|
8
|
Hou L, Klug G, Evguenieva-Hackenberg E. Archaeal DnaG contains a conserved N-terminal RNA-binding domain and enables tailing of rRNA by the exosome. Nucleic Acids Res 2014; 42:12691-706. [PMID: 25326320 PMCID: PMC4227792 DOI: 10.1093/nar/gku969] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The archaeal exosome is a phosphorolytic 3′–5′ exoribonuclease complex. In a reverse reaction it synthesizes A-rich RNA tails. Its RNA-binding cap comprises the eukaryotic orthologs Rrp4 and Csl4, and an archaea-specific subunit annotated as DnaG. In Sulfolobus solfataricus DnaG and Rrp4 but not Csl4 show preference for poly(rA). Archaeal DnaG contains N- and C-terminal domains (NTD and CTD) of unknown function flanking a TOPRIM domain. We found that the NT and TOPRIM domains have comparable, high conservation in all archaea, while the CTD conservation correlates with the presence of exosome. We show that the NTD is a novel RNA-binding domain with poly(rA)-preference cooperating with the TOPRIM domain in binding of RNA. Consistently, a fusion protein containing full-length Csl4 and NTD of DnaG led to enhanced degradation of A-rich RNA by the exosome. We also found that DnaG strongly binds native and invitro transcribed rRNA and enables its polynucleotidylation by the exosome. Furthermore, rRNA-derived transcripts with heteropolymeric tails were degraded faster by the exosome than their non-tailed variants. Based on our data, we propose that archaeal DnaG is an RNA-binding protein, which, in the context of the exosome, is involved in targeting of stable RNA for degradation.
Collapse
Affiliation(s)
- Linlin Hou
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | | |
Collapse
|
9
|
Makarova KS, Krupovic M, Koonin EV. Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery. Front Microbiol 2014; 5:354. [PMID: 25101062 PMCID: PMC4104785 DOI: 10.3389/fmicb.2014.00354] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/24/2014] [Indexed: 01/15/2023] Open
Abstract
The elaborate eukaryotic DNA replication machinery evolved from the archaeal ancestors that themselves show considerable complexity. Here we discuss the comparative genomic and phylogenetic analysis of the core replication enzymes, the DNA polymerases, in archaea and their relationships with the eukaryotic polymerases. In archaea, there are three groups of family B DNA polymerases, historically known as PolB1, PolB2 and PolB3. All three groups appear to descend from the last common ancestors of the extant archaea but their subsequent evolutionary trajectories seem to have been widely different. Although PolB3 is present in all archaea, with the exception of Thaumarchaeota, and appears to be directly involved in lagging strand replication, the evolution of this gene does not follow the archaeal phylogeny, conceivably due to multiple horizontal transfers and/or dramatic differences in evolutionary rates. In contrast, PolB1 is missing in Euryarchaeota but otherwise seems to have evolved vertically. The third archaeal group of family B polymerases, PolB2, includes primarily proteins in which the catalytic centers of the polymerase and exonuclease domains are disrupted and accordingly the enzymes appear to be inactivated. The members of the PolB2 group are scattered across archaea and might be involved in repair or regulation of replication along with inactivated members of the RadA family ATPases and an additional, uncharacterized protein that are encoded within the same predicted operon. In addition to the family B polymerases, all archaea, with the exception of the Crenarchaeota, encode enzymes of a distinct family D the origin of which is unclear. We examine multiple considerations that appear compatible with the possibility that family D polymerases are highly derived homologs of family B. The eukaryotic DNA polymerases show a highly complex relationship with their archaeal ancestors including contributions of proteins and domains from both the family B and the family D archaeal polymerases.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
10
|
Greenough L, Menin JF, Desai NS, Kelman Z, Gardner AF. Characterization of family D DNA polymerase from Thermococcus sp. 9°N. Extremophiles 2014; 18:653-64. [PMID: 24794034 PMCID: PMC4065339 DOI: 10.1007/s00792-014-0646-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/13/2014] [Indexed: 11/28/2022]
Abstract
Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we report the biochemical characterization of a heterodimeric polD from Thermococcus. PolD contains both DNA polymerase and proofreading 3′–5′ exonuclease activities to ensure efficient and accurate genome duplication. The polD incorporation fidelity was determined for the first time. Despite containing 3′–5′ exonuclease proofreading activity, polD has a relatively high error rate (95 × 10−5) compared to polB (19 × 10−5) and at least 10-fold higher than the polB DNA polymerases from yeast (polε and polδ) or Escherichia coli DNA polIII holoenzyme. The implications of polD fidelity and biochemical properties in leading and lagging strand synthesis are discussed.
Collapse
Affiliation(s)
- Lucia Greenough
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | | | | | | | | |
Collapse
|
11
|
Characterization of the replication initiator Orc1/Cdc6 from the Archaeon Picrophilus torridus. J Bacteriol 2013; 196:276-86. [PMID: 24187082 DOI: 10.1128/jb.01020-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic DNA replication is preceded by the assembly of prereplication complexes (pre-RCs) at or very near origins in G1 phase, which licenses origin firing in S phase. The archaeal DNA replication machinery broadly resembles the eukaryal apparatus, though simpler in form. The eukaryotic replication initiator origin recognition complex (ORC), which serially recruits Cdc6 and other pre-RC proteins, comprises six components, Orc1-6. In archaea, a single gene encodes a protein similar to both the eukaryotic Cdc6 and the Orc1 subunit of the eukaryotic ORC, with most archaea possessing one to three Orc1/Cdc6 orthologs. Genome sequence analysis of the extreme acidophile Picrophilus torridus revealed a single Orc1/Cdc6 (PtOrc1/Cdc6). Biochemical analyses show MBP-tagged PtOrc1/Cdc6 to preferentially bind ORB (origin recognition box) sequences. The protein hydrolyzes ATP in a DNA-independent manner, though DNA inhibits MBP-PtOrc1/Cdc6-mediated ATP hydrolysis. PtOrc1/Cdc6 exists in stable complex with PCNA in Picrophilus extracts, and MBP-PtOrc1/Cdc6 interacts directly with PCNA through a PIP box near its C terminus. Furthermore, PCNA stimulates MBP-PtOrc1/Cdc6-mediated ATP hydrolysis in a DNA-dependent manner. This is the first study reporting a direct interaction between Orc1/Cdc6 and PCNA in archaea. The bacterial initiator DnaA is converted from an active to an inactive form by ATP hydrolysis, a process greatly facilitated by the bacterial ortholog of PCNA, the β subunit of Pol III. The stimulation of PtOrc1/Cdc6-mediated ATP hydrolysis by PCNA and the conservation of PCNA-interacting protein motifs in several archaeal PCNAs suggest the possibility of a similar mechanism of regulation existing in archaea. This mechanism may involve other yet to be identified archaeal proteins.
Collapse
|