1
|
Kesgin-Schaefer S, Heidemann J, Puchert A, Koelbel K, Yorke BA, Huse N, Pearson AR, Uetrecht C, Tidow H. Crystal structure of a domain-swapped photoactivatable sfGFP variant provides evidence for GFP folding pathway. FEBS J 2019; 286:2329-2340. [PMID: 30817081 DOI: 10.1111/febs.14797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/07/2019] [Accepted: 02/27/2019] [Indexed: 01/23/2023]
Abstract
Photoactivatable fluorescent proteins (PA-FPs) are a powerful non-invasive tool in high-resolution live-cell imaging. They can be converted from an inactive to an active form by light, enabling the spatial and temporal trafficking of proteins and cell dynamics. PA-FPs have been previously generated by mutating selected residues in the chromophore or in its close proximity. A new strategy to generate PA-FPs is the genetic incorporation of unnatural amino acids (UAAs) containing photocaged groups using unique suppressor tRNA/aminoacyl-tRNA synthetase pairs. We set out to develop a photoactivatable GFP variant suitable for time-resolved structural studies. Here, we report the crystal structure of superfolder GFP (sfGFP) containing the UAA ortho-nitrobenzyl-tyrosine (ONBY) at position 66 and its spectroscopic characterization. Surprisingly, the crystal structure (to 2.7 Å resolution) reveals a dimeric domain-swapped arrangement of sfGFP66ONBY with residues 1-142 of one molecule associating with residues 148-234 from another molecule. This unusual domain-swapped structure supports a previously postulated GFP folding pathway that proceeds via an equilibrium intermediate.
Collapse
Affiliation(s)
- Stephanie Kesgin-Schaefer
- The Hamburg Centre for Ultrafast Imaging, Germany.,Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Germany
| | - Johannes Heidemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Anke Puchert
- The Hamburg Centre for Ultrafast Imaging, Germany.,Department of Physics, Center for Free-Electron Laser Science, Institute for Nanostructure and Solid State Physics, University of Hamburg, Germany
| | - Knut Koelbel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Briony A Yorke
- The Hamburg Centre for Ultrafast Imaging, Germany.,Department of Physics, Center for Free-Electron Laser Science, Institute for Nanostructure and Solid State Physics, University of Hamburg, Germany
| | - Nils Huse
- The Hamburg Centre for Ultrafast Imaging, Germany.,Department of Physics, Center for Free-Electron Laser Science, Institute for Nanostructure and Solid State Physics, University of Hamburg, Germany
| | - Arwen R Pearson
- The Hamburg Centre for Ultrafast Imaging, Germany.,Department of Physics, Center for Free-Electron Laser Science, Institute for Nanostructure and Solid State Physics, University of Hamburg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,European XFEL GmbH, Schenefeld, Germany
| | - Henning Tidow
- The Hamburg Centre for Ultrafast Imaging, Germany.,Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Germany
| |
Collapse
|
2
|
Niessen KA, Xu M, George DK, Chen MC, Ferré-D'Amaré AR, Snell EH, Cody V, Pace J, Schmidt M, Markelz AG. Protein and RNA dynamical fingerprinting. Nat Commun 2019; 10:1026. [PMID: 30833555 PMCID: PMC6399446 DOI: 10.1038/s41467-019-08926-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/04/2019] [Indexed: 01/30/2023] Open
Abstract
Protein structural vibrations impact biology by steering the structure to functional intermediate states; enhancing tunneling events; and optimizing energy transfer. Strong water absorption and a broad continuous vibrational density of states have prevented optical identification of these vibrations. Recently spectroscopic signatures that change with functional state were measured using anisotropic terahertz microscopy. The technique however has complex sample positioning requirements and long measurement times, limiting access for the biomolecular community. Here we demonstrate that a simplified system increases spectroscopic structure to dynamically fingerprint biomacromolecules with a factor of 6 reduction in data acquisition time. Using this technique, polarization varying anisotropy terahertz microscopy, we show sensitivity to inhibitor binding and unique vibrational spectra for several proteins and an RNA G-quadruplex. The technique’s sensitivity to anisotropic absorbance and birefringence provides rapid assessment of macromolecular dynamics that impact biology. The characterization of biomacromolecule structural vibrations has been impeded by a broad continuous vibrational density of states obscuring molecule specific vibrations. A terahertz microscopy system using polarization control produces signatures to dynamically fingerprint proteins and a RNA G-quadruplex.
Collapse
Affiliation(s)
| | - Mengyang Xu
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Deepu K George
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Michael C Chen
- National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | | | - Edward H Snell
- Hauptman-Woodward Medical Research Institute & Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Vivian Cody
- Hauptman-Woodward Medical Research Institute & Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - James Pace
- Hauptman-Woodward Medical Research Institute & Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Marius Schmidt
- Department of Physics, University of Wisconsin, Milwaukee, WI, USA
| | - Andrea G Markelz
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY, USA. .,Hauptman-Woodward Medical Research Institute & Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA.
| |
Collapse
|
3
|
Levantino M, Yorke BA, Monteiro DC, Cammarata M, Pearson AR. Using synchrotrons and XFELs for time-resolved X-ray crystallography and solution scattering experiments on biomolecules. Curr Opin Struct Biol 2015; 35:41-8. [PMID: 26342489 DOI: 10.1016/j.sbi.2015.07.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 11/17/2022]
Abstract
Time-resolved structural information is key to understand the mechanism of biological processes, such as catalysis and signalling. Recent developments in X-ray sources as well as data collection and analysis methods are making routine time-resolved X-ray crystallography and solution scattering experiments a real possibility for structural biologists. Here we review the information that can be obtained from these techniques and discuss the considerations that must be taken into account when designing a time-resolved experiment.
Collapse
Affiliation(s)
- Matteo Levantino
- Department of Physics and Chemistry, University of Palermo, Palermo 90128, Italy
| | - Briony A Yorke
- Hamburg Centre for Ultrafast Imaging & Institute of Nanostructure and Solid State Physics, University of Hamburg, Hamburg 22607, Germany
| | - Diana Cf Monteiro
- Astbury Centre for Structural Molecular Biology & School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Marco Cammarata
- Department of Physics, UMR UR1-CNRS 6251, University of Rennes 1, Rennes 35042, France
| | - Arwen R Pearson
- Hamburg Centre for Ultrafast Imaging & Institute of Nanostructure and Solid State Physics, University of Hamburg, Hamburg 22607, Germany.
| |
Collapse
|
4
|
Choe H, Gorfman S, Hinterstein M, Ziolkowski M, Knapp M, Heidbrink S, Vogt M, Bednarcik J, Berghäuser A, Ehrenberg H, Pietsch U. Combining high time and angular resolutions: time-resolved X-ray powder diffraction using a multi-channel analyser detector. J Appl Crystallogr 2015. [DOI: 10.1107/s1600576715004598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The design and testing of the new MAD-STROBO data acquisition system are reported. The system realizes stroboscopic collection of high-resolution X-ray powder diffraction profiles under a dynamically applied electric field. It synchronizes an externally applied stimulus and detected X-ray photons. The feasibility of detecting sub-millidegree shifts of powder diffraction profiles with microsecond time resolution is demonstrated. MAD-STROBO may be applied for the investigation of various macroscopic and domain-related processes induced by an external perturbation, such as elasticity or piezoelectricity.
Collapse
|
5
|
Peng L, Rasmussen MI, Chailyan A, Houen G, Højrup P. Probing the structure of human protein disulfide isomerase by chemical cross-linking combined with mass spectrometry. J Proteomics 2014; 108:1-16. [PMID: 24792702 DOI: 10.1016/j.jprot.2014.04.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/07/2014] [Accepted: 04/24/2014] [Indexed: 11/18/2022]
Abstract
UNLABELLED Protein disulfide-isomerase (PDI) is a four-domain flexible protein that catalyzes the formation of disulfide bonds in the endoplasmic reticulum. Here we have analyzed native PDI purified from human placenta by chemical cross-linking followed by mass spectrometry (CXMS). In addition to PDI the sample contained soluble calnexin and ERp72. Extensive cross-linking was observed within the PDI molecule, both intra- and inter-domain, as well as between the different components in the mixture. The high sensitivity of the analysis in the current experiments, combined with a likely promiscuous interaction pattern of the involved proteins, revealed relatively densely populated cross-link heat maps. The established X-ray structure of the monomeric PDI could be confirmed; however, the dimer as presented in the existing models does not seem to be prevalent in solution as modeling on the observed cross-links revealed new models of dimeric PDI. The observed inter-protein cross-links confirmed the existence of a peptide binding area on calnexin that binds strongly both PDI and ERp72. On the other hand, interaction sites on PDI and ERp72 could not be uniquely identified, indicating a more non-specific interaction pattern. BIOLOGICAL SIGNIFICANCE The present work demonstrates the use of chemical cross-linking and mass spectrometry (CXMS) for the determination of a solution structure of natural human PDI and its interaction with the chaperones ERp72 and calnexin. The data shows that the dimeric structure of PDI may be more diverse than indicated by present models. We further observe that the temperature influences the cross-linking pattern of PDI, but this does not influence the overall folding pattern of the molecule.
Collapse
Affiliation(s)
- Li Peng
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Morten Ib Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anna Chailyan
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Gunnar Houen
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
6
|
Gorfman S. Sub-microsecond X-ray crystallography: techniques, challenges, and applications for materials science. CRYSTALLOGR REV 2014. [DOI: 10.1080/0889311x.2014.908353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Howard JAK, Probert MR. Cutting-Edge Techniques Used for the Structural Investigation of Single Crystals. Science 2014; 343:1098-102. [DOI: 10.1126/science.1247252] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|