1
|
Crawford RA, Eastham M, Pool MR, Ashe MP. Orchestrated centers for the production of proteins or "translation factories". WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1867. [PMID: 39048533 DOI: 10.1002/wrna.1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The mechanics of how proteins are generated from mRNA is increasingly well understood. However, much less is known about how protein production is coordinated and orchestrated within the crowded intracellular environment, especially in eukaryotic cells. Recent studies suggest that localized sites exist for the coordinated production of specific proteins. These sites have been termed "translation factories" and roles in protein complex formation, protein localization, inheritance, and translation regulation have been postulated. In this article, we review the evidence supporting the translation of mRNA at these sites, the details of their mechanism of formation, and their likely functional significance. Finally, we consider the key uncertainties regarding these elusive structures in cells. This article is categorized under: Translation Translation > Mechanisms RNA Export and Localization > RNA Localization Translation > Regulation.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew Eastham
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Martin R Pool
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Cañonero L, Pautasso C, Galello F, Sigaut L, Pietrasanta L, Arroyo J, Bermúdez-Moretti M, Portela P, Rossi S. Heat stress regulates the expression of TPK1 gene at transcriptional and post-transcriptional levels in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119209. [PMID: 34999138 DOI: 10.1016/j.bbamcr.2021.119209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
In Saccharomyces cerevisiae cAMP regulates different cellular processes through PKA. The specificity of the response of the cAMP-PKA pathway is highly regulated. Here we address the mechanism through which the cAMP-PKA pathway mediates its response to heat shock and thermal adaptation in yeast. PKA holoenzyme is composed of a regulatory subunit dimer (Bcy1) and two catalytic subunits (Tpk1, Tpk2, or Tpk3). PKA subunits are differentially expressed under certain growth conditions. Here we demonstrate the increased abundance and half-life of TPK1 mRNA and the assembly of this mRNA in cytoplasmic foci during heat shock at 37 °C. The resistance of the foci to cycloheximide-induced disassembly along with the polysome profiling analysis suggest that TPK1 mRNA is impaired for entry into translation. TPK1 expression was also evaluated during a recurrent heat shock and thermal adaptation. Tpk1 protein level is significantly increased during the recovery periods. The crosstalk of cAMP-PKA pathway and CWI signalling was also studied. Wsc3 sensor and some components of the CWI pathway are necessary for the TPK1 expression upon heat shock. The assembly in foci upon thermal stress depends on Wsc3. Tpk1 expression is lower in a wsc3∆ mutant than in WT strain during thermal adaptation and thus the PKA levels are also lower. An increase in Tpk1 abundance in the PKA holoenzyme in response to heat shock is presented, suggesting that a recurrent stress enhanced the fitness for the coming favourable conditions. Therefore, the regulation of TPK1 expression by thermal stress contributes to the specificity of cAMP-PKA signalling.
Collapse
Affiliation(s)
- Luciana Cañonero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Constanza Pautasso
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Fiorella Galello
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Lorena Sigaut
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Física, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Lia Pietrasanta
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Física, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid, Spain
| | - Mariana Bermúdez-Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Morales-Polanco F, Bates C, Lui J, Casson J, Solari CA, Pizzinga M, Forte G, Griffin C, Garner KEL, Burt HE, Dixon HL, Hubbard S, Portela P, Ashe MP. Core Fermentation (CoFe) granules focus coordinated glycolytic mRNA localization and translation to fuel glucose fermentation. iScience 2021; 24:102069. [PMID: 33554071 PMCID: PMC7859310 DOI: 10.1016/j.isci.2021.102069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/16/2020] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Glycolysis is a fundamental metabolic pathway for glucose catabolism across biology, and glycolytic enzymes are among the most abundant proteins in cells. Their expression at such levels provides a particular challenge. Here we demonstrate that the glycolytic mRNAs are localized to granules in yeast and human cells. Detailed live cell and smFISH studies in yeast show that the mRNAs are actively translated in granules, and this translation appears critical for the localization. Furthermore, this arrangement is likely to facilitate the higher level organization and control of the glycolytic pathway. Indeed, the degree of fermentation required by cells is intrinsically connected to the extent of mRNA localization to granules. On this basis, we term these granules, core fermentation (CoFe) granules; they appear to represent translation factories, allowing high-level coordinated enzyme synthesis for a critical metabolic pathway.
Collapse
Affiliation(s)
- Fabian Morales-Polanco
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Christian Bates
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jennifer Lui
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Joseph Casson
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Clara A Solari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Mariavittoria Pizzinga
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Gabriela Forte
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Claire Griffin
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Kirsten E L Garner
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Harriet E Burt
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Hannah L Dixon
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon Hubbard
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Paula Portela
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Mark P Ashe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
4
|
Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol 2021; 220:e202009045. [PMID: 33464299 PMCID: PMC7816648 DOI: 10.1083/jcb.202009045] [Citation(s) in RCA: 821] [Impact Index Per Article: 205.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Subcellular localization of RNAs has gained attention in recent years as a prevalent phenomenon that influences numerous cellular processes. This is also evident for the large and relatively novel class of long noncoding RNAs (lncRNAs). Because lncRNAs are defined as RNA transcripts >200 nucleotides that do not encode protein, they are themselves the functional units, making their subcellular localization critical to their function. The discovery of tens of thousands of lncRNAs and the cumulative evidence involving them in almost every cellular activity render assessment of their subcellular localization essential to fully understanding their biology. In this review, we summarize current knowledge of lncRNA subcellular localization, factors controlling their localization, emerging themes, including the role of lncRNA isoforms and the involvement of lncRNAs in phase separation bodies, and the implications of lncRNA localization on their function and on cellular behavior. We also discuss gaps in the current knowledge as well as opportunities that these provide for novel avenues of investigation.
Collapse
Affiliation(s)
| | | | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
5
|
Ng PC, Wong ED, MacPherson KA, Aleksander S, Argasinska J, Dunn B, Nash RS, Skrzypek MS, Gondwe F, Jha S, Karra K, Weng S, Miyasato S, Simison M, Engel SR, Cherry JM. Transcriptome visualization and data availability at the Saccharomyces Genome Database. Nucleic Acids Res 2020; 48:D743-D748. [PMID: 31612944 PMCID: PMC7061941 DOI: 10.1093/nar/gkz892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
The Saccharomyces Genome Database (SGD; www.yeastgenome.org) maintains the official annotation of all genes in the Saccharomyces cerevisiae reference genome and aims to elucidate the function of these genes and their products by integrating manually curated experimental data. Technological advances have allowed researchers to profile RNA expression and identify transcripts at high resolution. These data can be configured in web-based genome browser applications for display to the general public. Accordingly, SGD has incorporated published transcript isoform data in our instance of JBrowse, a genome visualization platform. This resource will help clarify S. cerevisiae biological processes by furthering studies of transcriptional regulation, untranslated regions, genome engineering, and expression quantification in S. cerevisiae.
Collapse
Affiliation(s)
- Patrick C Ng
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Edith D Wong
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | | | - Suzi Aleksander
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Joanna Argasinska
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Barbara Dunn
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Robert S Nash
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Marek S Skrzypek
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Felix Gondwe
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Sagar Jha
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Kalpana Karra
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Shuai Weng
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Stuart Miyasato
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Matt Simison
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - Stacia R Engel
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| | - J Michael Cherry
- Department of Genetics, Stanford University, Palo Alto, CA 94304-5477, USA
| |
Collapse
|
6
|
Janapala Y, Preiss T, Shirokikh NE. Control of Translation at the Initiation Phase During Glucose Starvation in Yeast. Int J Mol Sci 2019; 20:E4043. [PMID: 31430885 PMCID: PMC6720308 DOI: 10.3390/ijms20164043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Glucose is one of the most important sources of carbon across all life. Glucose starvation is a key stress relevant to all eukaryotic cells. Glucose starvation responses have important implications in diseases, such as diabetes and cancer. In yeast, glucose starvation causes rapid and dramatic effects on the synthesis of proteins (mRNA translation). Response to glucose deficiency targets the initiation phase of translation by different mechanisms and with diverse dynamics. Concomitantly, translationally repressed mRNAs and components of the protein synthesis machinery may enter a variety of cytoplasmic foci, which also form with variable kinetics and may store or degrade mRNA. Much progress has been made in understanding these processes in the last decade, including with the use of high-throughput/omics methods of RNA and RNA:protein detection. This review dissects the current knowledge of yeast reactions to glucose starvation systematized by the stage of translation initiation, with the focus on rapid responses. We provide parallels to mechanisms found in higher eukaryotes, such as metazoans, for the most critical responses, and point out major remaining gaps in knowledge and possible future directions of research on translational responses to glucose starvation.
Collapse
Affiliation(s)
- Yoshika Janapala
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
| | - Nikolay E Shirokikh
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
7
|
Pizzinga M, Bates C, Lui J, Forte G, Morales-Polanco F, Linney E, Knotkova B, Wilson B, Solari CA, Berchowitz LE, Portela P, Ashe MP. Translation factor mRNA granules direct protein synthetic capacity to regions of polarized growth. J Cell Biol 2019; 218:1564-1581. [PMID: 30877141 PMCID: PMC6504908 DOI: 10.1083/jcb.201704019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/12/2018] [Accepted: 02/28/2019] [Indexed: 12/22/2022] Open
Abstract
mRNA localization serves key functions in localized protein production, making it critical that the translation machinery itself is present at these locations. Here we show that translation factor mRNAs are localized to distinct granules within yeast cells. In contrast to many messenger RNP granules, such as processing bodies and stress granules, which contain translationally repressed mRNAs, these granules harbor translated mRNAs under active growth conditions. The granules require Pab1p for their integrity and are inherited by developing daughter cells in a She2p/She3p-dependent manner. These results point to a model where roughly half the mRNA for certain translation factors is specifically directed in granules or translation factories toward the tip of the developing daughter cell, where protein synthesis is most heavily required, which has particular implications for filamentous forms of growth. Such a feedforward mechanism would ensure adequate provision of the translation machinery where it is to be needed most over the coming growth cycle.
Collapse
Affiliation(s)
- Mariavittoria Pizzinga
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Christian Bates
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jennifer Lui
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gabriella Forte
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Fabián Morales-Polanco
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emma Linney
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Barbora Knotkova
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Beverley Wilson
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Clara A Solari
- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Luke E Berchowitz
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Medical Center, New York, NY
| | - Paula Portela
- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mark P Ashe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
8
|
Signalling through the yeast MAPK Cell Wall Integrity pathway controls P-body assembly upon cell wall stress. Sci Rep 2019; 9:3186. [PMID: 30816278 PMCID: PMC6395727 DOI: 10.1038/s41598-019-40112-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/11/2019] [Indexed: 01/15/2023] Open
Abstract
Post-transcriptional control of mRNA is a key event in the regulation of gene expression. From yeast to human cells, P-bodies are cytoplasmic RNA-protein aggregates that play an essential role in this process, particularly under stress conditions. In this work, we show that in the model yeast Saccharomyces cerevisiae cell wall stress induces the formation of these structures. This effect is dependent on multiple elements in the Cell Wall Integrity (CWI) MAPK signalling pathway, a signal transduction cascade responsible for the maintenance of cell integrity under adverse environmental conditions. Remarkably, P-body assembly requires the catalytic activity of the MAPK of the pathway, Slt2/Mpk1. In accordance with the control exerted by this signalling pathway, the timing of P-body formation is similar to that of the activation of the CWI pathway. Noticeably, mRNAs whose expression is regulated by this pathway localize in P-bodies after the cell is exposed to stress following a temporal pattern coincident with CWI pathway activation. Moreover, when these mRNAs are overexpressed in a mutant background unable to form visible P-bodies, the cells show hypersensitivity to agents that interfere with cell wall integrity, supporting that they play a role in the mRNA lifecycle under stress conditions.
Collapse
|
9
|
New Antimicrobial Potential and Structural Properties of PAFB: A Cationic, Cysteine-Rich Protein from Penicillium chrysogenum Q176. Sci Rep 2018; 8:1751. [PMID: 29379111 PMCID: PMC5788923 DOI: 10.1038/s41598-018-20002-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
Small, cysteine-rich and cationic proteins with antimicrobial activity are produced by diverse organisms of all kingdoms and represent promising molecules for drug development. The ancestor of all industrial penicillin producing strains, the ascomycete Penicillium chryosgenum Q176, secretes the extensively studied antifungal protein PAF. However, the genome of this strain harbours at least two more genes that code for other small, cysteine-rich and cationic proteins with potential antifungal activity. In this study, we characterized the pafB gene product that shows high similarity to PgAFP from P. chrysogenum R42C. Although abundant and timely regulated pafB gene transcripts were detected, we could not identify PAFB in the culture broth of P. chrysogenum Q176. Therefore, we applied a P. chrysogenum-based expression system to produce sufficient amounts of recombinant PAFB to address unanswered questions concerning the structure and antimicrobial function. Nuclear magnetic resonance (NMR)-based analyses revealed a compact β-folded structure, comprising five β-strands connected by four solvent exposed and flexible loops and an “abcabc” disulphide bond pattern. We identified PAFB as an inhibitor of growth of human pathogenic moulds and yeasts. Furthermore, we document for the first time an anti-viral activity for two members of the small, cysteine-rich and cationic protein group from ascomycetes.
Collapse
|
10
|
Ballester-Tomás L, Prieto JA, Alepuz P, González A, Garre E, Randez-Gil F. Inappropriate translation inhibition and P-body formation cause cold-sensitivity in tryptophan-auxotroph yeast mutants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:314-323. [PMID: 27864078 DOI: 10.1016/j.bbamcr.2016.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/28/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022]
Abstract
In response to different adverse conditions, most eukaryotic organisms, including Saccharomyces cerevisiae, downregulate protein synthesis through the phosphorylation of eIF2α (eukaryotic initiation factor 2α) by Gcn2, a highly conserved protein kinase. Gcn2 also controls the translation of Gcn4, a transcription factor involved in the induction of amino acid biosynthesis enzymes. Here, we have studied the functional role of Gcn2 and Gcn2-regulating proteins, in controlling translation during temperature downshifts of TRP1 and trp1 yeast cells. Our results suggest that neither cold-instigated amino acid limitation nor Gcn2 are involved in the translation suppression at low temperature. However, loss of TRP1 causes increased eIF2α phosphorylation, Gcn2-dependent polysome disassembly and overactivity of Gcn4, which result in cold-sensitivity. Indeed, knock-out of GCN2 improves cold growth of trp1 cells. Likewise, mutation of several Gcn2-regulators and effectors results in cold-growth effects. Remarkably, we found that Hog1, the osmoresponsive MAPK, plays a role in the regulatory mechanism of Gcn2-eIF2α. Finally, we demonstrated that P-body formation responds to a downshift in temperature in a TRP1-dependent manner and is required for cold tolerance.
Collapse
Affiliation(s)
- Lidia Ballester-Tomás
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain
| | - Jose A Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain
| | - Paula Alepuz
- Departament of Biochemistry and Molecular Biology, ERI Biotecmed, Universitat de València, Dr. Moliner 50, Burjassot 46100, Spain
| | | | - Elena Garre
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain.
| |
Collapse
|
11
|
Systemic control of protein synthesis through sequestration of translation and ribosome biogenesis factors during severe heat stress. FEBS Lett 2015; 589:3654-64. [PMID: 26484595 DOI: 10.1016/j.febslet.2015.10.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/16/2015] [Accepted: 10/11/2015] [Indexed: 12/22/2022]
Abstract
Environmental stress causes the sequestration of proteins into insoluble deposits including cytoplasmic stress granules (SGs), containing mRNA and a variety of translation factors. Here we systematically identified proteins sequestered in Saccharomyces cerevisiae at 46 °C by a SG co-localization screen and proteomic analysis of insoluble protein fractions. We identified novel SG components including essential aminoacyl-tRNA synthetases. Moreover, we discovered nucleus-associated deposits containing ribosome biogenesis factors. Our study suggests downregulation of cytosolic protein synthesis and nuclear ribosome production at multiple levels through heat shock induced protein sequestrations.
Collapse
|