1
|
Mount HO, Urbanus ML, Zangari F, Gingras AC, Ensminger AW. The Legionella pneumophila effector PieF modulates mRNA stability through association with eukaryotic CCR4-NOT. mSphere 2024:e0089124. [PMID: 39699231 DOI: 10.1128/msphere.00891-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
The eukaryotic CCR4-NOT deadenylase complex is a highly conserved regulator of mRNA metabolism that influences the expression of the complete transcriptome, representing a prime target for a generalist bacterial pathogen. We show that a translocated bacterial effector protein, PieF (Lpg1972) of Legionella pneumophila, directly interacts with the CNOT7/8 nuclease module of CCR4-NOT, with a dissociation constant in the low nanomolar range. PieF is a robust in vitro inhibitor of the DEDD-type nuclease, CNOT7, acting in a stoichiometric, dose-dependent manner. Heterologous expression of PieF phenocopies knockout of the CNOT7 ortholog (POP2) in Saccharomyces cerevisiae, resulting in 6-azauracil sensitivity. In mammalian cells, expression of PieF leads to a variety of quantifiable phenotypes: PieF silences gene expression and reduces mRNA steady-state levels when artificially tethered to a reporter transcript, and its overexpression results in the nuclear exclusion of CNOT7. PieF expression also disrupts the association between CNOT6/6L EEP-type nucleases and CNOT7. Adding to the complexities of PieF activity in vivo, we identified a separate domain of PieF responsible for binding to eukaryotic kinases. Unlike what we observe for CNOT6/6L, we show that these interactions can occur concomitantly with PieF's binding to CNOT7. Collectively, this work reveals a new, highly conserved target of L. pneumophila effectors and suggests a mechanism by which the pathogen may be modulating host mRNA stability and expression during infection. IMPORTANCE The intracellular bacterial pathogen Legionella pneumophila targets conserved eukaryotic pathways to establish a replicative niche inside host cells. With a host range that spans billions of years of evolution (from protists to humans), the interaction between L. pneumophila and its hosts frequently involves conserved eukaryotic pathways (protein translation, ubiquitination, membrane trafficking, autophagy, and the cytoskeleton). Here, we present the identification of a new, highly conserved host target of L. pneumophila effectors: the CCR4-NOT complex. CCR4-NOT modulates mRNA stability in eukaryotes from yeast to humans, making it an attractive target for a generalist pathogen, such as L. pneumophila. We show that the uncharacterized L. pneumophila effector PieF specifically targets one component of this complex, the deadenylase subunit CNOT7/8. We show that the interaction between PieF and CNOT7 is direct, occurs with high affinity, and reshapes the catalytic activity, localization, and composition of the complex across evolutionarily diverse eukaryotic cells.
Collapse
Affiliation(s)
| | - Malene L Urbanus
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Zangari
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Alexander W Ensminger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Fan J, Liu C, Zhao Y, Xu Q, Yin Z, Liu Z, Mu Y. Single-Cell RNA Sequencing Reveals Differences in Chromatin Remodeling and Energy Metabolism among In Vivo-Developed, In Vitro-Fertilized, and Parthenogenetically Activated Embryos from the Oocyte to 8-Cell Stages in Pigs. Animals (Basel) 2024; 14:465. [PMID: 38338108 PMCID: PMC10854501 DOI: 10.3390/ani14030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
In vitro-fertilized (IVF) and parthenogenetically activated (PA) embryos, key to genetic engineering, face more developmental challenges than in vivo-developed embryos (IVV). We analyzed single-cell RNA-seq data from the oocyte to eight-cell stages in IVV, IVF, and PA porcine embryos, focusing on developmental differences during early zygotic genome activation (ZGA), a vital stage for embryonic development. (1) Our findings reveal that in vitro embryos (IVF and PA) exhibit more similar developmental trajectories compared to IVV embryos, with PA embryos showing the least gene diversity at each stage. (2) Significant differences in maternal mRNA, particularly affecting mRNA splicing, energy metabolism, and chromatin remodeling, were observed. Key genes like SMARCB1 (in vivo) and SIRT1 (in vitro) played major roles, with HDAC1 (in vivo) and EZH2 (in vitro) likely central in their complexes. (3) Across different types of embryos, there was minimal overlap in gene upregulation during ZGA, with IVV embryos demonstrating more pronounced upregulation. During minor ZGA, global epigenetic modification patterns diverged and expanded further. Specifically, in IVV, genes, especially those linked to H4 acetylation and H2 ubiquitination, were more actively regulated compared to PA embryos, which showed an increase in H3 methylation. Additionally, both types displayed a distinction in DNA methylation. During major ZGA, IVV distinctively upregulated genes related to mitochondrial regulation, ATP synthesis, and oxidative phosphorylation. (4) Furthermore, disparities in mRNA degradation-related genes between in vivo and in vitro embryos were more pronounced during major ZGA. In IVV, there was significant maternal mRNA degradation. Maternal genes regulating phosphatase activity and cell junctions, highly expressed in both in vivo and in vitro embryos, were degraded in IVV in a timely manner but not in in vitro embryos. (5) Our analysis also highlighted a higher expression of many mitochondrially encoded genes in in vitro embryos, yet their nucleosome occupancy and the ATP8 expression were notably higher in IVV.
Collapse
Affiliation(s)
- Jianlin Fan
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chang Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunjing Zhao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
| | - Qianqian Xu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhi Yin
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Hansen J, Siddiq MM, Yadaw AS, Tolentino RE, Rabinovich V, Jayaraman G, Jain MR, Liu T, Li H, Xiong Y, Goldfarb J, Iyengar R. Whole cell response to receptor stimulation involves many deep and distributed subcellular biochemical processes. J Biol Chem 2022; 298:102325. [PMID: 35926710 PMCID: PMC9520007 DOI: 10.1016/j.jbc.2022.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Neurite outgrowth is an integrated whole cell response triggered by the cannabinoid-1 receptor. We sought to identify the many different biochemical pathways that contribute to this whole cell response. To understand underlying mechanisms, we identified subcellular processes (SCPs) composed of one or more biochemical pathways and their interactions required for this response. Differentially expressed genes and proteins were obtained from bulk transcriptomics and proteomic analysis of extracts from cells stimulated with a cannabinoid-1 receptor agonist. We used these differentially expressed genes and proteins to build networks of interacting SCPs by combining the expression data with prior pathway knowledge. From these SCP networks, we identified additional genes that when ablated, experimentally validated the SCP involvement in neurite outgrowth. Our experiments and informatics modeling allowed us to identify diverse SCPs such as those involved in pyrimidine metabolism, lipid biosynthesis, and mRNA splicing and stability, along with more predictable SCPs such as membrane vesicle transport and microtubule dynamics. We find that SCPs required for neurite outgrowth are widely distributed among many biochemical pathways required for constitutive cellular functions, several of which are termed ‘deep’, since they are distal to signaling pathways and the key SCPs directly involved in extension of the neurite. In contrast, ‘proximal’ SCPs are involved in microtubule growth and membrane vesicle transport dynamics required for neurite outgrowth. From these bioinformatics and dynamical models based on experimental data, we conclude that receptor-mediated regulation of subcellular functions for neurite outgrowth is both distributed, that is, involves many different biochemical pathways, and deep.
Collapse
Affiliation(s)
- Jens Hansen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mustafa M Siddiq
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Arjun Singh Yadaw
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Rosa E Tolentino
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Vera Rabinovich
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Gomathi Jayaraman
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mohit Raja Jain
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NY, 07103, United States
| | - Tong Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NY, 07103, United States
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NY, 07103, United States
| | - Yuguang Xiong
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Joseph Goldfarb
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
4
|
Wu H, Becraft PW. Comparative transcriptomics and network analysis define gene coexpression modules that control maize aleurone development and auxin signaling. THE PLANT GENOME 2021; 14:e20126. [PMID: 34323399 DOI: 10.1002/tpg2.20126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
The naked endosperm1 (nkd1), naked endosperm2 (nkd2), and thick aleurone1 (thk1) genes are important regulators of maize (Zea mays L.) endosperm development. Double mutants of nkd1 and nkd2 (nkd1,2) show multiple aleurone (AL) cell layers with disrupted AL cell differentiation, whereas mutants of thk1 cause multiple cell layers of fully differentiated AL cells. Here, we conducted a comparative analysis of nkd1,2 and thk1 mutant endosperm transcriptomes to study how these factors regulate gene networks to control AL layer specification and cell differentiation. Weighted gene coexpression network analysis was incorporated with published laser capture microdissected transcriptome datasets to identify a coexpression module associated with AL development. In this module, both Nkd1,2+ and Thk1+ appear to regulate cell cycle and division, whereas Nkd1,2+, but not Thk1+, regulate auxin signaling. Further investigation of nkd1,2 differentially expressed genes combined with published putative targets of auxin response factors (ARFs) identified 61 AL-preferential genes that may be directly activated by NKD-modulated ARFs. All 61 genes were upregulated in nkd1,2 mutant and the enriched Gene Ontology terms suggested that they are associated with hormone crosstalk, lipid metabolism, and developmental growth. Expression of a transgenic DR5-red fluorescent protein auxin reporter was significantly higher in nkd1,2 mutant endosperm than in wild type, supporting the prediction that Nkd1,2+ negatively regulate auxin signaling in developing AL. Overall, these results suggest that Nkd1,2+ and Thk1+ may normally restrict AL development to a single cell layer by limiting cell division, and that Nkd1,2+ restrict auxin signaling in the AL to maintain normal cell patterning and differentiation processes.
Collapse
Affiliation(s)
- Hao Wu
- Dep. of Genetics, Development & Cell Biology, IA State Univ., Ames, IA, 50011, USA
| | - Philip W Becraft
- Dep. of Genetics, Development & Cell Biology, IA State Univ., Ames, IA, 50011, USA
- Agronomy Dep., IA State Univ., Ames, IA, 50011, USA
| |
Collapse
|
5
|
Gillen SL, Giacomelli C, Hodge K, Zanivan S, Bushell M, Wilczynska A. Differential regulation of mRNA fate by the human Ccr4-Not complex is driven by coding sequence composition and mRNA localization. Genome Biol 2021; 22:284. [PMID: 34615539 PMCID: PMC8496106 DOI: 10.1186/s13059-021-02494-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Regulation of protein output at the level of translation allows for a rapid adaptation to dynamic changes to the cell's requirements. This precise control of gene expression is achieved by complex and interlinked biochemical processes that modulate both the protein synthesis rate and stability of each individual mRNA. A major factor coordinating this regulation is the Ccr4-Not complex. Despite playing a role in most stages of the mRNA life cycle, no attempt has been made to take a global integrated view of how the Ccr4-Not complex affects gene expression. RESULTS This study has taken a comprehensive approach to investigate post-transcriptional regulation mediated by the Ccr4-Not complex assessing steady-state mRNA levels, ribosome position, mRNA stability, and protein production transcriptome-wide. Depletion of the scaffold protein CNOT1 results in a global upregulation of mRNA stability and the preferential stabilization of mRNAs enriched for G/C-ending codons. We also uncover that mRNAs targeted to the ER for their translation have reduced translational efficiency when CNOT1 is depleted, specifically downstream of the signal sequence cleavage site. In contrast, translationally upregulated mRNAs are normally localized in p-bodies, contain disorder-promoting amino acids, and encode nuclear localized proteins. Finally, we identify ribosome pause sites that are resolved or induced by the depletion of CNOT1. CONCLUSIONS We define the key mRNA features that determine how the human Ccr4-Not complex differentially regulates mRNA fate and protein synthesis through a mechanism linked to codon composition, amino acid usage, and mRNA localization.
Collapse
Affiliation(s)
- Sarah L Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Chiara Giacomelli
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kelly Hodge
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Ania Wilczynska
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
6
|
Schwenk P, Sheerin DJ, Ponnu J, Staudt AM, Lesch KL, Lichtenberg E, Medzihradszky KF, Hoecker U, Klement E, Viczián A, Hiltbrunner A. Uncovering a novel function of the CCR4-NOT complex in phytochrome A-mediated light signalling in plants. eLife 2021; 10:63697. [PMID: 33783355 PMCID: PMC8009681 DOI: 10.7554/elife.63697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Phytochromes are photoreceptors regulating growth and development in plants. Using the model plant Arabidopsis, we identified a novel signalling pathway downstream of the far-red light-sensing phytochrome, phyA, that depends on the highly conserved CCR4-NOT complex. CCR4-NOT is integral to RNA metabolism in yeast and animals, but its function in plants is largely unknown. NOT9B, an Arabidopsis homologue of human CNOT9, is a component of the CCR4-NOT complex, and acts as negative regulator of phyA-specific light signalling when bound to NOT1, the scaffold protein of the complex. Light-activated phyA interacts with and displaces NOT9B from NOT1, suggesting a potential mechanism for light signalling through CCR4-NOT. ARGONAUTE 1 and proteins involved in splicing associate with NOT9B and we show that NOT9B is required for specific phyA-dependent alternative splicing events. Furthermore, association with nuclear localised ARGONAUTE 1 raises the possibility that NOT9B and CCR4-NOT are involved in phyA-modulated gene expression. Place a seedling on a windowsill, and soon you will notice the fragile stem bending towards the glass to soak in the sun and optimize its growth. Plants can ‘sense’ light thanks to specialized photoreceptor molecules: for instance, the phytochrome A is responsible for detecting weak and ‘far-red’ light from the very edge of the visible spectrum. Once the phytochrome has been activated, this message is relayed to the rest of the plant through an intricate process that requires other molecules. The CCR4-NOT protein complex is vital for all plants, animals and fungi, suggesting that it was already present in early life forms. Here, Schwenk et al. examine whether CCR4-NOT could have acquired a new role in plants to help them respond to far-red light. Scanning the genetic information of the plant model Arabidopsis thaliana revealed that the gene encoding the NOT9 subunit of CCR4-NOT had been duplicated in plants during evolution. NOT9B, the protein that the new copy codes for, has a docking site that can attach to both phytochrome A and CCR4-NOT. When NOT9B binds phytochrome A, it is released from the CCR4-NOT complex: this could trigger a cascade of reactions that ultimately changes how A. thaliana responds to far-red light. Plants that had not enough or too much NOT9B were respectively more or less responsive to that type of light, showing that the duplication of the gene coding for this subunit had helped plants respond to certain types of light. The findings by Schwenk et al. illustrate how existing structures can be repurposed during evolution to carry new roles. They also provide a deeper understanding of how plants optimize their growth, a useful piece of information in a world where most people rely on crops as their main source of nutrients.
Collapse
Affiliation(s)
- Philipp Schwenk
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - David J Sheerin
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jathish Ponnu
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Anne-Marie Staudt
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Klara L Lesch
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Internal Medicine IV, Department of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Elisabeth Lichtenberg
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Eva Klement
- Laboratory of Proteomics Research, Biological Research Centre, Szeged, Hungary
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Yan YB. Diverse functions of deadenylases in DNA damage response and genomic integrity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1621. [PMID: 32790161 DOI: 10.1002/wrna.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
DNA damage response (DDR) is a coordinated network of diverse cellular processes including the detection, signaling, and repair of DNA lesions, the adjustment of metabolic network and cell fate determination. To deal with the unavoidable DNA damage caused by either endogenous or exogenous stresses, the cells need to reshape the gene expression profile to allow efficient transcription and translation of DDR-responsive messenger RNAs (mRNAs) and to repress the nonessential mRNAs. A predominant method to adjust RNA fate is achieved by modulating the 3'-end oligo(A) or poly(A) length via the opposing actions of polyadenylation and deadenylation. Poly(A)-specific ribonuclease (PARN) and the carbon catabolite repressor 4 (CCR4)-Not complex, the major executors of deadenylation, are indispensable to DDR and genomic integrity in eukaryotic cells. PARN modulates cell cycle progression by regulating the stabilities of mRNAs and microRNA (miRNAs) involved in the p53 pathway and contributes to genomic stability by affecting the biogenesis of noncoding RNAs including miRNAs and telomeric RNA. The CCR4-Not complex is involved in diverse pathways of DDR including transcriptional regulation, signaling pathways, mRNA stabilities, translation regulation, and protein degradation. The RNA targets of deadenylases are tuned by the DDR signaling pathways, while in turn the deadenylases can regulate the levels of DNA damage-responsive proteins. The mutual feedback between deadenylases and the DDR signaling pathways allows the cells to precisely control DDR by dynamically adjusting the levels of sensors and effectors of the DDR signaling pathways. Here, the diverse functions of deadenylases in DDR are summarized and the underlying mechanisms are proposed according to recent findings. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Hartenian E, Glaunsinger BA. Feedback to the central dogma: cytoplasmic mRNA decay and transcription are interdependent processes. Crit Rev Biochem Mol Biol 2019; 54:385-398. [PMID: 31656086 PMCID: PMC6871655 DOI: 10.1080/10409238.2019.1679083] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/13/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Transcription and RNA decay are key determinants of gene expression; these processes are typically considered as the uncoupled beginning and end of the messenger RNA (mRNA) lifecycle. Here we describe the growing number of studies demonstrating interplay between these spatially disparate processes in eukaryotes. Specifically, cells can maintain mRNA levels by buffering against changes in mRNA stability or transcription, and can also respond to virally induced accelerated decay by reducing RNA polymerase II gene expression. In addition to these global responses, there is also evidence that mRNAs containing a premature stop codon can cause transcriptional upregulation of homologous genes in a targeted fashion. In each of these systems, RNA binding proteins (RBPs), particularly those involved in mRNA degradation, are critical for cytoplasmic to nuclear communication. Although their specific mechanistic contributions are yet to be fully elucidated, differential trafficking of RBPs between subcellular compartments are likely to play a central role in regulating this gene expression feedback pathway.
Collapse
Affiliation(s)
- Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Britt A. Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, Berkeley, CA 94720
| |
Collapse
|
9
|
Abstract
The Ccr4-Not complex is an essential multi-subunit protein complex that plays a fundamental role in eukaryotic mRNA metabolism and has a multitude of different roles that impact eukaryotic gene expression . It has a conserved core of three Not proteins, the Ccr4 protein, and two Ccr4 associated factors, Caf1 and Caf40. A fourth Not protein, Not4, is conserved, but is only a stable subunit of the complex in yeast. Certain subunits have been duplicated during evolution, with functional divergence, such as Not3 in yeast, and Ccr4 or Caf1 in human. However the complex includes only one homolog for each protein. In addition, species-specific subunits are part of the complex, such as Caf130 in yeast or Not10 and Not11 in human. Two conserved catalytic functions are associated with the complex, deadenylation and ubiquitination . The complex adopts an L-shaped structure, in which different modules are bound to a large Not1 scaffold protein. In this chapter we will summarize our current knowledge of the architecture of the complex and of the structure of its constituents.
Collapse
Affiliation(s)
- Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, Switzerland.
| | - Olesya O Panasenko
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, Switzerland
| |
Collapse
|
10
|
Dronamraju R, Hepperla AJ, Shibata Y, Adams AT, Magnuson T, Davis IJ, Strahl BD. Spt6 Association with RNA Polymerase II Directs mRNA Turnover During Transcription. Mol Cell 2019; 70:1054-1066.e4. [PMID: 29932900 DOI: 10.1016/j.molcel.2018.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/23/2018] [Accepted: 05/17/2018] [Indexed: 10/28/2022]
Abstract
Spt6 is an essential histone chaperone that mediates nucleosome reassembly during gene transcription. Spt6 also associates with RNA polymerase II (RNAPII) via a tandem Src2 homology domain. However, the significance of Spt6-RNAPII interaction is not well understood. Here, we show that Spt6 recruitment to genes and the nucleosome reassembly functions of Spt6 can still occur in the absence of its association with RNAPII. Surprisingly, we found that Spt6-RNAPII association is required for efficient recruitment of the Ccr4-Not de-adenylation complex to transcribed genes for essential degradation of a range of mRNAs, including mRNAs required for cell-cycle progression. These findings reveal an unexpected control mechanism for mRNA turnover during transcription facilitated by a histone chaperone.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Austin J Hepperla
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yoichiro Shibata
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander T Adams
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Terry Magnuson
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, The Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, The Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Departments of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
PERIOD-controlled deadenylation of the timeless transcript in the Drosophila circadian clock. Proc Natl Acad Sci U S A 2019; 116:5721-5726. [PMID: 30833404 DOI: 10.1073/pnas.1814418116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Drosophila circadian oscillator relies on a negative transcriptional feedback loop, in which the PERIOD (PER) and TIMELESS (TIM) proteins repress the expression of their own gene by inhibiting the activity of the CLOCK (CLK) and CYCLE (CYC) transcription factors. A series of posttranslational modifications contribute to the oscillations of the PER and TIM proteins but few posttranscriptional mechanisms have been described that affect mRNA stability. Here we report that down-regulation of the POP2 deadenylase, a key component of the CCR4-NOT deadenylation complex, alters behavioral rhythms. Down-regulating POP2 specifically increases TIM protein and tim mRNA but not tim pre-mRNA, supporting a posttranscriptional role. Indeed, reduced POP2 levels induce a lengthening of tim mRNA poly(A) tail. Surprisingly, such effects are lost in per 0 mutants, supporting a PER-dependent inhibition of tim mRNA deadenylation by POP2. We report a deadenylation mechanism that controls the oscillations of a core clock gene transcript.
Collapse
|
12
|
Degradation of a Novel DNA Damage Response Protein, Tankyrase 1 Binding Protein 1, following Adenovirus Infection. J Virol 2018; 92:JVI.02034-17. [PMID: 29593045 PMCID: PMC5974482 DOI: 10.1128/jvi.02034-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/09/2018] [Indexed: 01/02/2023] Open
Abstract
Infection by most DNA viruses activates a cellular DNA damage response (DDR), which may be to the detriment or advantage of the virus. In the case of adenoviruses, they neutralize antiviral effects of DDR activation by targeting a number of proteins for rapid proteasome-mediated degradation. We have now identified a novel DDR protein, tankyrase 1 binding protein 1 (TNKS1BP1) (also known as Tab182), which is degraded during infection by adenovirus serotype 5 and adenovirus serotype 12. In both cases, degradation requires the action of the early region 1B55K (E1B55K) and early region 4 open reading frame 6 (E4orf6) viral proteins and is mediated through the proteasome by the action of cullin-based cellular E3 ligases. The degradation of Tab182 appears to be serotype specific, as the protein remains relatively stable following infection with adenovirus serotypes 4, 7, 9, and 11. We have gone on to confirm that Tab182 is an integral component of the CNOT complex, which has transcriptional regulatory, deadenylation, and E3 ligase activities. The levels of at least 2 other members of the complex (CNOT3 and CNOT7) are also reduced during adenovirus infection, whereas the levels of CNOT4 and CNOT1 remain stable. The depletion of Tab182 with small interfering RNA (siRNA) enhances the expression of early region 1A proteins (E1As) to a limited extent during adenovirus infection, but the depletion of CNOT1 is particularly advantageous to the virus and results in a marked increase in the expression of adenovirus early proteins. In addition, the depletion of Tab182 and CNOT1 results in a limited increase in the viral DNA level during infection. We conclude that the cellular CNOT complex is a previously unidentified major target for adenoviruses during infection. IMPORTANCE Adenoviruses target a number of cellular proteins involved in the DNA damage response for rapid degradation. We have now shown that Tab182, which we have confirmed to be an integral component of the mammalian CNOT complex, is degraded following infection by adenovirus serotypes 5 and 12. This requires the viral E1B55K and E4orf6 proteins and is mediated by cullin-based E3 ligases and the proteasome. In addition to Tab182, the levels of other CNOT proteins are also reduced during adenovirus infection. Thus, CNOT3 and CNOT7, for example, are degraded, whereas CNOT4 and CNOT1 are not. The siRNA-mediated depletion of components of the complex enhances the expression of adenovirus early proteins and increases the concentration of viral DNA produced during infection. This study highlights a novel protein complex, CNOT, which is targeted for adenovirus-mediated protein degradation. To our knowledge, this is the first time that the CNOT complex has been identified as an adenoviral target.
Collapse
|
13
|
Baptista T, Grünberg S, Minoungou N, Koster MJE, Timmers HTM, Hahn S, Devys D, Tora L. SAGA Is a General Cofactor for RNA Polymerase II Transcription. Mol Cell 2017; 68:130-143.e5. [PMID: 28918903 PMCID: PMC5632562 DOI: 10.1016/j.molcel.2017.08.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/28/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Prior studies suggested that SAGA and TFIID are alternative factors that promote RNA polymerase II transcription with about 10% of genes in S. cerevisiae dependent on SAGA. We reassessed the role of SAGA by mapping its genome-wide location and role in global transcription in budding yeast. We find that SAGA maps to the UAS elements of most genes, overlapping with Mediator binding and irrespective of previous designations of SAGA or TFIID-dominated genes. Disruption of SAGA through mutation or rapid subunit depletion reduces transcription from nearly all genes, measured by newly-synthesized RNA. We also find that the acetyltransferase Gcn5 synergizes with Spt3 to promote global transcription and that Spt3 functions to stimulate TBP recruitment at all tested genes. Our data demonstrate that SAGA acts as a general cofactor required for essentially all RNA polymerase II transcription and is not consistent with the previous classification of SAGA and TFIID-dominated genes.
Collapse
Affiliation(s)
- Tiago Baptista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Sebastian Grünberg
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nadège Minoungou
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Maria J E Koster
- Molecular Cancer Research and Stem Cell Section, Regenerative Medicine Center and Center for Molecular Medicine, University Medical Center Utrecht c/o Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - H T Marc Timmers
- Molecular Cancer Research and Stem Cell Section, Regenerative Medicine Center and Center for Molecular Medicine, University Medical Center Utrecht c/o Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research Center (DKFZ) and Department of Urology, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Steve Hahn
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
14
|
Collart MA, Kassem S, Villanyi Z. Mutations in the NOT Genes or in the Translation Machinery Similarly Display Increased Resistance to Histidine Starvation. Front Genet 2017; 8:61. [PMID: 28588606 PMCID: PMC5439007 DOI: 10.3389/fgene.2017.00061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022] Open
Abstract
The NOT genes encode subunits of the conserved Ccr4-Not complex, a global regulator of gene expression, and in particular of mRNA metabolism. They were originally identified in a selection for increased resistance to histidine starvation in the yeast S. cerevisiae. Recent work indicated that the Not5 subunit, ortholog of mammalian CNOT3, determines global translation levels by defining binding of the Ccr4-Not scaffold protein Not1 to ribosomal mRNAs during transcription. This is needed for optimal translation of ribosomal proteins. In this work we searched for mutations in budding yeast that were resistant to histidine starvation using the same selection that originally led to the isolation of the NOT genes. We thereby isolated mutations in ribosome-related genes. This common phenotype of ribosome mutants and not mutants is in good agreement with the positive role of the Not proteins for translation. In this regard, it is interesting that frequent mutations in RPL5 and RPL10 or in CNOT3 have been observed to accumulate in adult T-cell acute lymphoblastic leukemia (T-ALL). This suggests that in metazoans a common function implicating ribosome subunits and CNOT3 plays a role in the development of cancer. In this perspective we suggest that the Ccr4-Not complex, according to translation levels and fidelity, could itself be involved in the regulation of amino acid biosynthesis levels. We discuss how this could explain why mutations have been identified in many cancers.
Collapse
Affiliation(s)
- Martine A Collart
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire (CMU), Faculty of Medicine, University of GenevaGeneva, Switzerland
| | - Sari Kassem
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire (CMU), Faculty of Medicine, University of GenevaGeneva, Switzerland
| | - Zoltan Villanyi
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire (CMU), Faculty of Medicine, University of GenevaGeneva, Switzerland
| |
Collapse
|
15
|
Goossens J, De Geyter N, Walton A, Eeckhout D, Mertens J, Pollier J, Fiallos-Jurado J, De Keyser A, De Clercq R, Van Leene J, Gevaert K, De Jaeger G, Goormachtig S, Goossens A. Isolation of protein complexes from the model legume Medicago truncatula by tandem affinity purification in hairy root cultures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:476-489. [PMID: 27377668 DOI: 10.1111/tpj.13258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 05/26/2023]
Abstract
Tandem affinity purification coupled to mass spectrometry (TAP-MS) is one of the most powerful techniques to isolate protein complexes and elucidate protein interaction networks. Here, we describe the development of a TAP-MS strategy for the model legume Medicago truncatula, which is widely studied for its ability to produce valuable natural products and to engage in endosymbiotic interactions. As biological material, transgenic hairy roots, generated through Agrobacterium rhizogenes-mediated transformation of M. truncatula seedlings, were used. As proof of concept, proteins involved in the cell cycle, transcript processing and jasmonate signalling were chosen as bait proteins, resulting in a list of putative interactors, many of which confirm the interologue concept of protein interactions, and which can contribute to biological information about the functioning of these bait proteins in planta. Subsequently, binary protein-protein interactions among baits and preys, and among preys were confirmed by a systematic yeast two-hybrid screen. Together, by establishing a M. truncatula TAP-MS platform, we extended the molecular toolbox of this model species.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Nathan De Geyter
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Alan Walton
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jan Mertens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jennifer Fiallos-Jurado
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Annick De Keyser
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Rebecca De Clercq
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jelle Van Leene
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
16
|
Mugler CF, Hondele M, Heinrich S, Sachdev R, Vallotton P, Koek AY, Chan LY, Weis K. ATPase activity of the DEAD-box protein Dhh1 controls processing body formation. eLife 2016; 5. [PMID: 27692063 PMCID: PMC5096884 DOI: 10.7554/elife.18746] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022] Open
Abstract
Translational repression and mRNA degradation are critical mechanisms of posttranscriptional gene regulation that help cells respond to internal and external cues. In response to certain stress conditions, many mRNA decay factors are enriched in processing bodies (PBs), cellular structures involved in degradation and/or storage of mRNAs. Yet, how cells regulate assembly and disassembly of PBs remains poorly understood. Here, we show that in budding yeast, mutations in the DEAD-box ATPase Dhh1 that prevent ATP hydrolysis, or that affect the interaction between Dhh1 and Not1, the central scaffold of the CCR4-NOT complex and an activator of the Dhh1 ATPase, prevent PB disassembly in vivo. Intriguingly, this process can be recapitulated in vitro, since recombinant Dhh1 and RNA, in the presence of ATP, phase-separate into liquid droplets that rapidly dissolve upon addition of Not1. Our results identify the ATPase activity of Dhh1 as a critical regulator of PB formation. DOI:http://dx.doi.org/10.7554/eLife.18746.001 Most cells and organisms live in changeable environments. Adapting to environmental changes means that organisms must quickly alter which of their genes they express. Varying which genes are switched on or off is not enough; cells must also degrade existing messenger RNAs (or mRNAs for short), which contain the genetic instructions of the previously active genes. Therefore, cells must tightly regulate the machinery needed to degrade mRNAs. When Baker’s yeast (also known as budding yeast) cells experience certain stressful conditions, the proteins that break down mRNAs localize into specific structures inside the cell known as ‘processing bodies’. These structures are found in many other organisms across evolution, from yeast to human. Processing bodies also form in a variety of biological contexts, such as in nerve cells and developing embryos. Still, why cells form processing bodies, and how their assembly is regulated, is not well understood. One essential component of processing bodies is an enzyme called Dhh1. This enzyme has been conserved throughout evolution and is known to promote the decay of mRNAs as well as to repress their translation into proteins. Now, Mugler, Hondele et al. show that Dhh1’s must break down molecules of the energy carrier ATP (referred to as its “ATPase activity”) in order to regulate the dynamic nature of processing bodies. Mutant Dhh1 proteins that lack ATPase activity form permanent processing bodies in non-stressed yeast cells. This shows that that the breakdown of ATP by Dhh1 is required for the disassembly of processing bodies. Similar results were seen for mutant Dhh1 proteins that cannot interact with Not1, a protein which enhances the ATPase activity of Dhh1. Next Mugler, Hondele et al. mixed purified Dhh1 with ATP and RNA molecules and saw that the mixture underwent a “liquid-liquid phase separation” and formed observable granules, similar to oil droplets in water. These granules dissolved when Not1 was added to stimulate the Dhh1 enzyme to turnover ATP. This showed that several important biochemical and biophysical aspects of processing bodies seen within living cells could be recreated outside of a cell. Armed with a greater understanding of the rules that govern the formation of processing bodies, future work can now address how important processing bodies are for regulating gene expression. Another challenge for the future will be to examine the specific roles that processing bodies play in yeast and other cells, like human egg cells or nerve cells. DOI:http://dx.doi.org/10.7554/eLife.18746.002
Collapse
Affiliation(s)
| | | | | | | | | | - Adriana Y Koek
- University of California, Berkeley, Berkeley, United States
| | - Leon Y Chan
- University of California, Berkeley, Berkeley, United States
| | | |
Collapse
|
17
|
Genetic mapping of male pheromone response in the European corn borer identifies candidate genes regulating neurogenesis. Proc Natl Acad Sci U S A 2016; 113:E6401-E6408. [PMID: 27698145 DOI: 10.1073/pnas.1610515113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The sexual pheromone communication system of moths is a model system for studies of the evolution of reproductive isolation. Females emit a blend of volatile components that males detect at a distance. Species differences in female pheromone composition and male response directly reinforce reproductive isolation in nature, because even slight variations in the species-specific pheromone blend are usually rejected by the male. The mechanisms by which a new pheromone signal-response system could evolve are enigmatic, because any deviation from the optimally attractive blend should be selected against. Here we investigate the genetic mechanisms enabling a switch in male response. We used a quantitative trait locus-mapping approach to identify the genetic basis of male response in the two pheromone races of the European corn borer, Ostrinia nubilalis Male response to a 99:1 vs. a 3:97 ratio of the E and Z isomers of the female pheromone is governed by a single, sex-linked locus. We found that the chromosomal region most tightly linked to this locus contains genes involved in neurogenesis but, in accordance with an earlier study, does not contain the odorant receptors expressed in the male antenna that detect the pheromone. This finding implies that differences in the development of neuronal pathways conveying information from the antenna, not differences in pheromone detection by the odorant receptors, are primarily responsible for the behavioral response differences among the males in this system. Comparison with other moth species reveals a previously unexplored mechanism by which male pheromone response can change in evolution.
Collapse
|
18
|
Abstract
In a recent issue of Nature Communications Ukleja and co‐workers reported a cryo‐EM 3D reconstruction of the Ccr4‐Not complex from Schizosaccharomyces pombe with an immunolocalization of the different subunits. The newly gained architectural knowledge provides cues to apprehend the functional diversity of this major eukaryotic regulator. Indeed, in the cytoplasm alone, Ccr4‐Not regulates translational repression, decapping and deadenylation, and the Not module additionally plays a positive role in translation. The spatial distribution of the subunits within the structure is compatible with a model proposing that the Ccr4‐Not complex interacts with the 5′ and 3′ ends of target mRNAs, allowing different functional modules of the complex to act at different stages of the translation process, possibly within a circular constellation of the mRNA. This work opens new avenues, and reveals important gaps in our understanding regarding structure and mode of function of the Ccr4‐Not complex that need to be addressed in the future.
Collapse
Affiliation(s)
- Zoltan Villanyi
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics Geneva, Geneva, Switzerland
| | - Martine A Collart
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland. .,Institute of Genetics and Genomics Geneva, Geneva, Switzerland.
| |
Collapse
|
19
|
Collart MA. The Ccr4-Not complex is a key regulator of eukaryotic gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:438-54. [PMID: 26821858 PMCID: PMC5066686 DOI: 10.1002/wrna.1332] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
The Ccr4‐Not complex is a multisubunit complex present in all eukaryotes that contributes to regulate gene expression at all steps, from production of messenger RNAs (mRNAs) in the nucleus to their degradation in the cytoplasm. In the nucleus it influences the post‐translational modifications of the chromatin template that has to be remodeled for transcription, it is present at sites of transcription and associates with transcription factors as well as with the elongating polymerase, it interacts with the factors that prepare the new transcript for export to the cytoplasm and finally is important for nuclear quality control and influences mRNA export. In the cytoplasm it is present in polysomes where mRNAs are translated and in RNA granules where mRNAs will be redirected upon inhibition of translation. It influences mRNA translatability, and is needed during translation, on one hand for co‐translational protein interactions and on the other hand to preserve translation that stalls. It is one of the relevant players during co‐translational quality control. It also interacts with factors that will repress translation or induce mRNA decapping when recruited to the translating template. Finally, Ccr4‐Not carries deadenylating enzymes and is a key player in mRNA decay, generic mRNA decay that follows normal translation termination, co‐translational mRNA decay of transcripts on which the ribosomes stall durably or which carry a non‐sense mutation and finally mRNA decay that is induced by external signaling for a change in genetic programming. Ccr4‐Not is a master regulator of eukaryotic gene expression. WIREs RNA 2016, 7:438–454. doi: 10.1002/wrna.1332 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Martine A Collart
- Department Microbiology and Molecular Medicine, CMU, Geneva, Switzerland.,Institute of Genetics and Genomics, Geneva, Switzerland
| |
Collapse
|