1
|
Bonilla G, Morris A, Kundu S, DuCasse A, Kirkpatrick G, Jeffries NE, Chetal K, Yvanovich EE, Milosevic J, Zhao T, Xia J, Barghout R, Scadden D, Mansour MK, Kingston RE, Sykes DB, Mercier FE, Sadreyev RI. Leukemia aggressiveness is driven by chromatin remodeling and expression changes of core regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582846. [PMID: 38496490 PMCID: PMC10942317 DOI: 10.1101/2024.02.29.582846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Molecular mechanisms driving clonal aggressiveness in leukemia are not fully understood. We tracked and analyzed MLL-rearranged leukemic clones independently evolving towards higher aggressiveness. More aggressive subclones lost their growth differential ex vivo but restored it upon secondary transplantation, suggesting molecular memory of aggressiveness. Development of aggressiveness was associated with clone-specific gradual modulation of chromatin states and expression levels across the genome, with a surprising preferential trend of reversing the earlier changes between normal and leukemic progenitors. To focus on the core aggressiveness program, we identified genes with consistent changes of expression and chromatin marks that were maintained in vivo and ex vivo in both clones. Overexpressing selected core genes (Smad1 as aggressiveness driver, Irx5 and Plag1 as suppressors) affected leukemic progenitor growth in the predicted way and had convergent downstream effects on central transcription factors and repressive epigenetic modifiers, suggesting a broader regulatory network of leukemic aggressiveness.
Collapse
|
2
|
Zylbersztejn F, Byelinska I, Jeanpierre S, Barral L, Geistlich K, Flores-Violante M, Voeltzel T, Paubelle E, Heiblig M, Alcazer V, Le Meur G, Fossard G, Belhabri A, Cruz-Moura I, Hermine O, Lefort S, Maguer-Satta V. Human myeloid differentiation by BMP4 signaling through the VDR pathway in acute myeloid leukemia. Cell Death Discov 2024; 10:325. [PMID: 39013874 PMCID: PMC11252393 DOI: 10.1038/s41420-024-02090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Affiliation(s)
- Florence Zylbersztejn
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université Claude Bernard Lyon 1, CRCL, 69000, Lyon, France
- Necker Hospital, Imagine Institute, Inserm U116 CNRS ERL 8654, 75015, Paris, France
| | - Iryna Byelinska
- Department of Clinical Medicine, Educational and Scientific Center "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Sandrine Jeanpierre
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université Claude Bernard Lyon 1, CRCL, 69000, Lyon, France
- Centre Léon Bérard, 69000, Lyon, France
| | - Léa Barral
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université Claude Bernard Lyon 1, CRCL, 69000, Lyon, France
| | - Kevin Geistlich
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université Claude Bernard Lyon 1, CRCL, 69000, Lyon, France
- Necker Hospital, Imagine Institute, Inserm U116 CNRS ERL 8654, 75015, Paris, France
| | - Mario Flores-Violante
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université Claude Bernard Lyon 1, CRCL, 69000, Lyon, France
| | - Thibault Voeltzel
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université Claude Bernard Lyon 1, CRCL, 69000, Lyon, France
| | - Etienne Paubelle
- Hospices Civils de Lyon, Hematology Department, Centre Hospitalier Lyon Sud, 69495, Pierre Bénite, France
| | - Mael Heiblig
- Hospices Civils de Lyon, Hematology Department, Centre Hospitalier Lyon Sud, 69495, Pierre Bénite, France
| | - Vincent Alcazer
- Hospices Civils de Lyon, Hematology Department, Centre Hospitalier Lyon Sud, 69495, Pierre Bénite, France
| | - Gregoire Le Meur
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université Claude Bernard Lyon 1, CRCL, 69000, Lyon, France
- Hospices Civils de Lyon, Hematology Department, Centre Hospitalier Lyon Sud, 69495, Pierre Bénite, France
| | - Gaelle Fossard
- Hospices Civils de Lyon, Hematology Department, Centre Hospitalier Lyon Sud, 69495, Pierre Bénite, France
| | - Amine Belhabri
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université Claude Bernard Lyon 1, CRCL, 69000, Lyon, France
- Centre Léon Bérard, 69000, Lyon, France
| | - Ivan Cruz-Moura
- Necker Hospital, Imagine Institute, Inserm U116 CNRS ERL 8654, 75015, Paris, France
| | - Olivier Hermine
- Necker Hospital, Imagine Institute, Inserm U116 CNRS ERL 8654, 75015, Paris, France
| | - Sylvain Lefort
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France.
- Université Claude Bernard Lyon 1, CRCL, 69000, Lyon, France.
| | - Véronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France.
- Université Claude Bernard Lyon 1, CRCL, 69000, Lyon, France.
- Centre Léon Bérard, 69000, Lyon, France.
| |
Collapse
|
3
|
Kandarpa M, Robinson D, Wu YM, Qin T, Pettit K, Li Q, Luker G, Sartor M, Chinnaiyan A, Talpaz M. Broad Next-Generation Integrated Sequencing of Myelofibrosis Identifies Disease-Specific and Age-Related Genomic Alterations. Clin Cancer Res 2024; 30:1972-1983. [PMID: 38386293 PMCID: PMC11061602 DOI: 10.1158/1078-0432.ccr-23-0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/18/2023] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE Myeloproliferative neoplasms (MPN) are characterized by the overproduction of differentiated myeloid cells. Mutations in JAK2, CALR, and MPL are considered drivers of Bcr-Abl-ve MPN, including essential thrombocythemia (ET), polycythemia vera (PV), prefibrotic primary myelofibrosis (prePMF), and overt myelofibrosis (MF). However, how these driver mutations lead to phenotypically distinct and/or overlapping diseases is unclear. EXPERIMENTAL DESIGN To compare the genetic landscape of MF to ET/PV/PrePMF, we sequenced 1,711 genes for mutations along with whole transcriptome RNA sequencing of 137 patients with MPN. RESULTS In addition to driver mutations, 234 and 74 genes were found to be mutated in overt MF (N = 106) and ET/PV/PrePMF (N = 31), respectively. Overt MF had more mutations compared with ET/PV/prePMF (5 vs. 4 per subject, P = 0.006). Genes frequently mutated in MF included high-risk genes (ASXL1, SRSF2, EZH2, IDH1/2, and U2AF1) and Ras pathway genes. Mutations in NRAS, KRAS, SRSF2, EZH2, IDH2, and NF1 were exclusive to MF. Advancing age, higher DIPSS, and poor overall survival (OS) correlated with increased variants in MF. Ras mutations were associated with higher leukocytes and platelets and poor OS. The comparison of gene expression showed upregulation of proliferation and inflammatory pathways in MF. Notably, ADGRL4, DNASE1L3, PLEKHGB4, HSPG2, MAMDC2, and DPYSL3 were differentially expressed in hematopoietic stem and differentiated cells. CONCLUSIONS Our results illustrate that evolution of MF from ET/PV/PrePMF likely advances with age, accumulation of mutations, and activation of proliferative pathways. The genes and pathways identified by integrated genomics approach provide insight into disease transformation and progression and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Malathi Kandarpa
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Dan Robinson
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Kristen Pettit
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Qing Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Gary Luker
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Maureen Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Arul Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Moshe Talpaz
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Schneider P, Wander P, Arentsen-Peters STCJM, Vrenken KS, Rockx-Brouwer D, Adriaanse FRS, Hoeve V, Paassen I, Drost J, Pieters R, Stam RW. CRISPR-Cas9 Library Screening Identifies Novel Molecular Vulnerabilities in KMT2A-Rearranged Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:13207. [PMID: 37686014 PMCID: PMC10487613 DOI: 10.3390/ijms241713207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
In acute lymphoblastic leukemia (ALL), chromosomal translocations involving the KMT2A gene represent highly unfavorable prognostic factors and most commonly occur in patients less than 1 year of age. Rearrangements of the KMT2A gene drive epigenetic changes that lead to aberrant gene expression profiles that strongly favor leukemia development. Apart from this genetic lesion, the mutational landscape of KMT2A-rearranged ALL is remarkably silent, providing limited insights for the development of targeted therapy. Consequently, identifying potential therapeutic targets often relies on differential gene expression, yet the inhibition of these genes has rarely translated into successful therapeutic strategies. Therefore, we performed CRISPR-Cas9 knock-out screens to search for genetic dependencies in KMT2A-rearranged ALL. We utilized small-guide RNA libraries directed against the entire human epigenome and kinome in various KMT2A-rearranged ALL, as well as wild-type KMT2A ALL cell line models. This screening approach led to the discovery of the epigenetic regulators ARID4B and MBD3, as well as the receptor kinase BMPR2 as novel molecular vulnerabilities and attractive therapeutic targets in KMT2A-rearranged ALL.
Collapse
Affiliation(s)
- Pauline Schneider
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Priscilla Wander
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | - Kirsten S. Vrenken
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | | | - Veerle Hoeve
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Irene Paassen
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Ronald W. Stam
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
5
|
Fernández-Sevilla LM, Valencia J, Ortiz-Sánchez P, Fraile-Ramos A, Zuluaga P, Jiménez E, Sacedón R, Martínez-Sánchez MV, Jazbec J, Debeljak M, Fedders B, Stanulla M, Schewe D, Cario G, Minguela A, Ramírez M, Varas A, Vicente Á. High BMP4 expression in low/intermediate risk BCP-ALL identifies children with poor outcomes. Blood 2022; 139:3303-3313. [PMID: 35313334 PMCID: PMC11022983 DOI: 10.1182/blood.2021013506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) outcome has improved in the last decades, but leukemic relapses are still one of the main problems of this disease. Bone morphogenetic protein 4 (BMP4) was investigated as a new candidate biomarker with potential prognostic relevance, and its pathogenic role was assessed in the development of disease. A retrospective study was performed with 115 pediatric patients with BCP-ALL, and BMP4 expression was analyzed by quantitative reverse transcription polymerase chain reaction in leukemic blasts at the time of diagnosis. BMP4 mRNA expression levels in the third (upper) quartile were associated with a higher cumulative incidence of relapse as well as a worse 5-year event-free survival and central nervous system (CNS) involvement. Importantly, this association was also evident among children classified as having a nonhigh risk of relapse. A validation cohort of 236 patients with BCP-ALL supported these data. Furthermore, high BMP4 expression promoted engraftment and rapid disease progression in an NSG mouse xenograft model with CNS involvement. Pharmacological blockade of the canonical BMP signaling pathway significantly decreased CNS infiltration and consistently resulted in amelioration of clinical parameters, including neurological score. Mechanistically, BMP4 favored chemoresistance, enhanced adhesion and migration through brain vascular endothelial cells, and promoted a proinflammatory microenvironment and CNS angiogenesis. These data provide evidence that BMP4 expression levels in leukemic cells could be a useful biomarker to identify children with poor outcomes in the low-/intermediate-risk groups of BCP-ALL and that BMP4 could be a new therapeutic target to blockade leukemic CNS disease.
Collapse
Affiliation(s)
- Lidia M. Fernández-Sevilla
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos, Alcorcón, Spain
| | - Jaris Valencia
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Paula Ortiz-Sánchez
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Alberto Fraile-Ramos
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Pilar Zuluaga
- Statistics and Operations Research Department, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Eva Jiménez
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Rosa Sacedón
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - María V. Martínez-Sánchez
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA) and Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | | | - Marusa Debeljak
- Clinical Institute for Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Birthe Fedders
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Denis Schewe
- Department of Pediatrics, Otto-von-Guericke University, Magdeburg, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Alfredo Minguela
- Immunology Service, Clinic University Hospital Virgen de la Arrrixaca (HCUVA) and Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Manuel Ramírez
- Department of Pediatric Hematology and Oncology, Advanced Therapies Unit, Niño Jesús University Children's Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alberto Varas
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ángeles Vicente
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
6
|
Sales A, Khodr V, Machillot P, Chaar L, Fourel L, Guevara-Garcia A, Migliorini E, Albigès-Rizo C, Picart C. Differential bioactivity of four BMP-family members as function of biomaterial stiffness. Biomaterials 2022; 281:121363. [PMID: 35063741 PMCID: PMC7613911 DOI: 10.1016/j.biomaterials.2022.121363] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
While a soft film itself is not able to induce cell spreading, BMP-2 presented via such soft film (so called "matrix-bound BMP-2") was previously shown to trigger cell spreading, migration and downstream BMP-2 signaling. Here, we used thin films of controlled stiffness presenting matrix-bound BMPs to study the effect of four BMP members (BMP-2, 4, 7, 9) on cell adhesion and differentiation of skeletal progenitors. We performed automated high-content screening of cellular responses, including cell number, cell spreading area, SMAD phosphorylation and alkaline phosphatase activity. We revealed that the cell response to bBMPs is BMP-type specific, and involved certain BMP receptors and beta chain integrins. In addition, this response is stiffness-dependent for several receptors. The basolateral presentation of the BMPs allowed us to discriminate the specificity of cellular response, especiallyd the role of type I and II BMP receptors and of β integrins in a BMP-type and stiffness-dependent manner. Notably, BMP-2 and BMP-4 were found to have distinct roles, while ALK5, previously known as a TGF-β receptor was revealed to be involved in the BMP-pathway.
Collapse
Affiliation(s)
- Adrià Sales
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France.
| | - Valia Khodr
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Paul Machillot
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Line Chaar
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Laure Fourel
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Amaris Guevara-Garcia
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Elisa Migliorini
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Corinne Albigès-Rizo
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Catherine Picart
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
7
|
Migliorini E, Guevara-Garcia A, Albiges-Rizo C, Picart C. Learning from BMPs and their biophysical extracellular matrix microenvironment for biomaterial design. Bone 2020; 141:115540. [PMID: 32730925 PMCID: PMC7614069 DOI: 10.1016/j.bone.2020.115540] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/19/2023]
Abstract
It is nowadays well-accepted that the extracellular matrix (ECM) is not a simple reservoir for growth factors but is an organization center of their biological activity. In this review, we focus on the ability of the ECM to regulate the biological activity of BMPs. In particular, we survey the role of the ECM components, notably the glycosaminoglycans and fibrillary ECM proteins, which can be promoters or repressors of the biological activities mediated by the BMPs. We examine how a process called mechano-transduction induced by the ECM can affect BMP signaling, including BMP internalization by the cells. We also focus on the spatio-temporal regulation of the BMPs, including their release from the ECM, which enables to modulate their spatial localization as well as their local concentration. We highlight how biomaterials can recapitulate some aspects of the BMPs/ECM interactions and help to answer fundamental questions to reveal previously unknown molecular mechanisms. Finally, the design of new biomaterials inspired by the ECM to better present BMPs is discussed, and their use for a more efficient bone regeneration in vivo is also highlighted.
Collapse
Affiliation(s)
- Elisa Migliorini
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France.
| | - Amaris Guevara-Garcia
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France; Université Grenoble Alpes, Institut for Advances Biosciences, Institute Albert Bonniot, INSERM U1209, CNRS 5309, La Tronche, France
| | - Corinne Albiges-Rizo
- Université Grenoble Alpes, Institut for Advances Biosciences, Institute Albert Bonniot, INSERM U1209, CNRS 5309, La Tronche, France
| | - Catherine Picart
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France.
| |
Collapse
|
8
|
Targeting BMP signaling in the bone marrow microenvironment of myeloid leukemia. Biochem Soc Trans 2020; 48:411-418. [DOI: 10.1042/bst20190223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/29/2022]
Abstract
The bone morphogenetic protein (BMP) pathway regulates the fate and proliferation of normal hematopoietic stem cells (HSC) as well as interactions with their niche. While BMP2 and BMP4 promote HSC differentiation, only BMP4 maintains HSC pool and favors interactions with their niche. In myeloid leukemia, we have identified intrinsic and extrinsic dysregulations of the BMP pathway in Chronic Myeloid Leukemia (CML) and Acute Myeloid leukemia (AML) responsible for leukemic stem cells (LSC) survival. In AML, BMP pathway alterations sustain and promote resistant immature-like leukemic cells by activating a new signaling cascade. Binding of BMP4 to BMPR1A leads to ΔNp73 expression, which in turn induces NANOG, altogether associated with a poor patient's prognosis. Despite efficient targeted therapies, like Tyrosine Kinase Inhibitors (TKI) in CML, many patients retain LSCs. Our laboratory demonstrated that the BMP pathway sustains a permanent pool of LSCs expressing high levels of BMPR1B receptor, that evolve upon treatment to progressively implement a BMP4 autocrine loop, leading to TKI-resistant cells. Single cell RNA-Seq analysis of TKI-persisting LSCs showed a co-enrichment of BMP with Jak2-signaling, quiescence and stem cell (SC) signatures. Using a new model of persisting LSCs, we recently demonstrated that BMPR1B+ cells display co-activated Smad1/5/8 and Stat3 pathways and could be targeted by blocking BMPR1B/Jak2 signal. Lastly, a specific BMPR1B inhibitor impaired BMP4-mediated LSC protection against TKIs. Altogether, data based on various studies including ours, indicate that BMP targeting could eliminate leukemic cells within a protective bone marrow microenvironment to efficiently impact residual resistance or persistence of LSCs in myeloid leukemia.
Collapse
|
9
|
Li H, Li J, Cheng J, Chen X, Zhou L, Li Z. AML‑derived mesenchymal stem cells upregulate CTGF expression through the BMP pathway and induce K562‑ADM fusiform transformation and chemoresistance. Oncol Rep 2019; 42:1035-1046. [PMID: 31322275 PMCID: PMC6667869 DOI: 10.3892/or.2019.7237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
Bone marrow‑derived mesenchymal stem cells (MSCs), are the basic cellular components that make up the bone marrow microenvironment (BMM). In acute myeloid leukemia (AML), the morphology and function of MSCs changes in accordance with the transformation of the BMM. Moreover, the transformation of MSCs into osteoblasts is determined through the bone morphogenetic protein (BMP) pathway, ultimately leading to an altered expression of the downstream adhesion molecule, connective tissue growth factor (CTGF). In this study, we aimed to explore the interaction of possible pathways in AML‑derived mesenchymal stem cells (AML‑MSCs) co‑cultured with the K562 and K562‑ADM cell lines. AML‑MSCs were co‑cultured with K562/K562‑ADM cells, and the interactions between the cells were verified by morphological detection, peroxidase staining (POX), reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and fluorescence in situ hybridization (FISH). The proliferation of K562/K562‑ADM cells under co‑culture conditions was detected by flow cytometry. The expression levels of BMP4 and CTGF were examined by RT‑qPCR and western blot (WB) analysis. The detection of interleukin (IL)‑6 and IL‑32 was also determined by enzyme linked immunosorbent assay (ELISA). In the co‑culture system, the K562‑ADM cells underwent fusiform transformation. The occurrence of this transformation was associated with an increased expression of CTGF due to the dysregulation of the BMP pathway. The AML‑MSCs promoted the proliferation of the K562‑ADM cell, but inhibited that of the K562 cells. These findings were confirmed by changes in the expression of the soluble cytokines, IL‑6 and IL‑32. On the whole, the findings of this study demonstrate that AML‑MSCs regulate the expression of CTGF through the BMP pathway. In addition, they affect cytokine production, induce spindle‑shaped transformation, and increase drug resistance in the K562‑ADM cells. Thus, the morphological transformation through the BMP pathway provides us with a novel target with which to circumvent tumor occurrence, development, drug resistance, invasion and metastasis.
Collapse
Affiliation(s)
- Haiying Li
- Department of Central Laboratory, The First Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Juan Li
- Department of Central Laboratory, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Juan Cheng
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xuan Chen
- Department of Central Laboratory, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lanxia Zhou
- Department of Central Laboratory, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhao Li
- Department of Central Laboratory, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
10
|
Acute Lymphoblastic Leukaemia Cells Impair Dendritic Cell and Macrophage Differentiation: Role of BMP4. Cells 2019; 8:cells8070722. [PMID: 31337120 PMCID: PMC6679123 DOI: 10.3390/cells8070722] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/06/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells and macrophages are common components of the tumour immune microenvironment and can contribute to immune suppression in both solid and haematological cancers. The Bone Morphogenetic Protein (BMP) pathway has been reported to be involved in cancer, and more recently in leukaemia development and progression. In the present study, we analyse whether acute lymphoblastic leukaemia (ALL) cells can affect the differentiation of dendritic cells and macrophages and the involvement of BMP pathway in the process. We show that ALL cells produce BMP4 and that conditioned media from ALL cells promote the generation of dendritic cells with immunosuppressive features and skew M1-like macrophage polarization towards a less pro-inflammatory phenotype. Likewise, BMP4 overexpression in ALL cells potentiates their ability to induce immunosuppressive dendritic cells and favours the generation of M2-like macrophages with pro-tumoral features. These results suggest that BMP4 is in part responsible for the alterations in dendritic cell and macrophage differentiation produced by ALL cells.
Collapse
|
11
|
Voeltzel T, Flores-Violante M, Zylbersztejn F, Lefort S, Billandon M, Jeanpierre S, Joly S, Fossard G, Milenkov M, Mazurier F, Nehme A, Belhabri A, Paubelle E, Thomas X, Michallet M, Louache F, Nicolini FE, Caron de Fromentel C, Maguer-Satta V. A new signaling cascade linking BMP4, BMPR1A, ΔNp73 and NANOG impacts on stem-like human cell properties and patient outcome. Cell Death Dis 2018; 9:1011. [PMID: 30262802 PMCID: PMC6160490 DOI: 10.1038/s41419-018-1042-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/20/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
Abstract
In a significant number of cases cancer therapy is followed by a resurgence of more aggressive tumors derived from immature cells. One example is acute myeloid leukemia (AML), where an accumulation of immature cells is responsible for relapse following treatment. We previously demonstrated in chronic myeloid leukemia that the bone morphogenetic proteins (BMP) pathway is involved in stem cell fate and contributes to transformation, expansion, and persistence of leukemic stem cells. Here, we have identified intrinsic and extrinsic dysregulations of the BMP pathway in AML patients at diagnosis. BMP2 and BMP4 protein concentrations are elevated within patients’ bone marrow with a BMP4-dominant availability. This overproduction likely depends on the bone marrow microenvironment, since MNCs do not overexpress BMP4 transcripts. Intrinsically, the receptor BMPR1A transcript is increased in leukemic samples with more cells presenting this receptor at the membrane. This high expression of BMPR1A is further increased upon BMP4 exposure, specifically in AML cells. Downstream analysis demonstrated that BMP4 controls the expression of the survival factor ΔNp73 through its binding to BMPR1A. At the functional level, this results in the direct induction of NANOG expression and an increase of stem-like features in leukemic cells, as shown by ALDH and functional assays. In addition, we identified for the first time a strong correlation between ΔNp73, BMPR1A and NANOG expression with patient outcome. These results highlight a new signaling cascade initiated by tumor environment alterations leading to stem-cell features and poor patients’ outcome.
Collapse
Affiliation(s)
- Thibault Voeltzel
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France. .,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France. .,Université de Lyon, 69000, Lyon, France. .,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France. .,Université de Lyon 1, 69000, Lyon, France.
| | - Mario Flores-Violante
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France
| | - Florence Zylbersztejn
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France
| | - Sylvain Lefort
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France
| | - Marion Billandon
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France
| | - Sandrine Jeanpierre
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France.,Centre Léon Bérard, 69000, Lyon, France
| | - Stéphane Joly
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France
| | - Gaelle Fossard
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France.,Hospices Civils de Lyon, Hematology Department, Centre Hospitalier Lyon Sud, 69495, Pierre Bénite, France
| | - Milen Milenkov
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France
| | - Frédéric Mazurier
- CNRS ERL 7001, 37032, Tours, France.,CNRS GDR 3697 MicroNiT, Tours, France
| | | | - Amine Belhabri
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France.,Centre Léon Bérard, 69000, Lyon, France
| | - Etienne Paubelle
- Hospices Civils de Lyon, Hematology Department, Centre Hospitalier Lyon Sud, 69495, Pierre Bénite, France
| | - Xavier Thomas
- Hospices Civils de Lyon, Hematology Department, Centre Hospitalier Lyon Sud, 69495, Pierre Bénite, France
| | - Mauricette Michallet
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France.,Centre Léon Bérard, 69000, Lyon, France
| | - Fawzia Louache
- CNRS GDR 3697 MicroNiT, Tours, France.,Inserm, UMR1170, 94000, Villejuif, France
| | - Franck-Emmanuel Nicolini
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France.,Centre Léon Bérard, 69000, Lyon, France
| | - Claude Caron de Fromentel
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.,Université de Lyon, 69000, Lyon, France.,Université de Lyon 1, 69000, Lyon, France
| | - Véronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France. .,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France. .,Université de Lyon, 69000, Lyon, France. .,Department of Tumor Escape Signaling, INSERM U1052, CNRS UMR5286, 69000, Lyon, France. .,Université de Lyon 1, 69000, Lyon, France. .,CNRS GDR 3697 MicroNiT, Tours, France.
| |
Collapse
|
12
|
Zylbersztejn F, Flores-Violante M, Voeltzel T, Nicolini FE, Lefort S, Maguer-Satta V. The BMP pathway: A unique tool to decode the origin and progression of leukemia. Exp Hematol 2018; 61:36-44. [PMID: 29477370 DOI: 10.1016/j.exphem.2018.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
The microenvironment (niche) governs the fate of stem cells (SCs) by balancing self-renewal and differentiation. Increasing evidence indicates that the tumor niche plays an active role in cancer, but its important properties for tumor initiation progression and resistance remain to be identified. Clinical data show that leukemic stem cell (LSC) survival is responsible for disease persistence and drug resistance, probably due to their sustained interactions with the tumor niche. Bone morphogenetic protein (BMP) signaling is a key pathway controlling stem cells and their niche. BMP2 and BMP4 are important in both the normal and the cancer context. Several studies have revealed profound alterations of the BMP signaling in cancer SCs, with major deregulations of the BMP receptors and their downstream signaling elements. This was illustrated in the hematopoietic system by pioneer studies in chronic myelogenous leukemia that may now be expanded to acute myeloid leukemia and lymphoid leukemia, as reviewed here. At diagnosis, cells from the leukemic microenvironment are the major providers of soluble BMPs. Conversely, LSCs display altered receptors and downstream BMP signaling elements accompanied by altered functional responses to BMPs. These studies reveal the role of BMPs in tumor initiation, in addition to their known effects in later stages of transformation and progression. They also reveal the importance of BMPs in fueling cell transformation and expansion by overamplifying a natural SC response. This mechanism may explain the survival of LSCs independently of the initial oncogenic event and therefore may be involved in resistance processes.
Collapse
Affiliation(s)
- Florence Zylbersztejn
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France
| | - Mario Flores-Violante
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France
| | - Thibault Voeltzel
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France
| | - Franck-Emmanuel Nicolini
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France; Centre Léon Bérard, 69000 Lyon, France
| | - Sylvain Lefort
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France
| | - Véronique Maguer-Satta
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France.
| |
Collapse
|
13
|
Immature CML cells implement a BMP autocrine loop to escape TKI treatment. Blood 2017; 130:2860-2871. [PMID: 29138221 DOI: 10.1182/blood-2017-08-801019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/03/2017] [Indexed: 12/14/2022] Open
Abstract
The BCR-ABL specific tyrosine kinase inhibitors (TKI) changed the outcome of chronic myeloid leukemia (CML), turning a life-threatening disease into a chronic illness. However, TKI are not yet curative, because most patients retain leukemic stem cells (LSC) and their progenitors in bone marrow and relapse following treatment cessation. At diagnosis, deregulation of the bone morphogenetic protein (BMP) pathway is involved in LSC and progenitor expansion. Here, we report that BMP pathway alterations persist in TKI-resistant patients. In comparison with patients in complete cytogenetic remission, TKI-resistant LSC and progenitors display high levels of BMPR1b expression and alterations of its cellular localization. In vitro treatment of immature chronic phase CML cells with TKI alone, or in combination with interferon-α, results in the preferential survival of BMPR1b+ cells. We demonstrated persistent and increasing BMP4 production by patients' mesenchymal cells with resistance. Patient follow-up revealed an increase of BMPR1b expression and in BMP4 expression in LSC from TKI-resistant patients in comparison with diagnosis, while remaining unchanged in sensitive patients. Both leukemic and nonleukemic cells exhibit higher BMP4 levels in the bone marrow of TKI-resistant patients. Exposure to BMP2/BMP4 does not alter BCR-ABL transcript expression but is accompanied by the overexpression of TWIST-1, a transcription factor highly expressed in resistant LSC. By modulating BMP4 or BMPR1b expression, we show that these elements are involved in TKI resistance. In summary, we reveal that persistence of BMP alterations and existence of an autocrine loop promote CML-primitive cells' TKI resistance.
Collapse
|