1
|
Singh A, Pandey KK, Agrawal SK, Srivastava RK, Bhattacharyya S, Verma B. The SARS-CoV-2 UTR’s Intrudes Host RBP’s and Modulates Cellular Splicing. Adv Virol 2023; 2023:2995443. [PMID: 37065904 PMCID: PMC10098413 DOI: 10.1155/2023/2995443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus that causes a potentially fatal respiratory disease known as coronavirus disease (COVID-19) and is responsible for the ongoing pandemic with increasing mortality. Understanding the host-virus interaction involved in SARS-CoV-2 pathophysiology will enhance our understanding of the mechanistic basis of COVID-19 infection. The characterization of post-transcriptional gene regulatory networks, particularly pre-mRNA splicing, and the identification and characterization of host proteins interacting with the 5′ and 3′UTRs of SARS-CoV-2 will improve our understanding of post-transcriptional gene regulation during SARS-CoV-2 pathogenesis. Here, we demonstrate that either SARS-CoV-2 infection or exogenous overexpression of the 5′ and 3’UTRs of the viral genomic RNAs, results in reduced mRNA levels possibly due to modulation of host cell pre-mRNA splicing. Further, we have investigated the potential RNA-binding proteins interacting with the 5′ and 3′UTRs, using in-silico approaches. Our results suggest that 5′ and 3′UTRs indeed interact with many RNA-binding proteins. Our results provide a primer for further investigations into the UTR-mediated regulation of splicing and related molecular mechanisms in host cells.
Collapse
Affiliation(s)
- Anjali Singh
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Kush Kumar Pandey
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- Nebraska Center for Virology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln 68583, NE, USA
| | - Shubham Kumar Agrawal
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
2
|
Horn T, Gosliga A, Li C, Enculescu M, Legewie S. Position-dependent effects of RNA-binding proteins in the context of co-transcriptional splicing. NPJ Syst Biol Appl 2023; 9:1. [PMID: 36653378 PMCID: PMC9849329 DOI: 10.1038/s41540-022-00264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/08/2022] [Indexed: 01/19/2023] Open
Abstract
Alternative splicing is an important step in eukaryotic mRNA pre-processing which increases the complexity of gene expression programs, but is frequently altered in disease. Previous work on the regulation of alternative splicing has demonstrated that splicing is controlled by RNA-binding proteins (RBPs) and by epigenetic DNA/histone modifications which affect splicing by changing the speed of polymerase-mediated pre-mRNA transcription. The interplay of these different layers of splicing regulation is poorly understood. In this paper, we derived mathematical models describing how splicing decisions in a three-exon gene are made by combinatorial spliceosome binding to splice sites during ongoing transcription. We additionally take into account the effect of a regulatory RBP and find that the RBP binding position within the sequence is a key determinant of how RNA polymerase velocity affects splicing. Based on these results, we explain paradoxical observations in the experimental literature and further derive rules explaining why the same RBP can act as inhibitor or activator of cassette exon inclusion depending on its binding position. Finally, we derive a stochastic description of co-transcriptional splicing regulation at the single-cell level and show that splicing outcomes show little noise and follow a binomial distribution despite complex regulation by a multitude of factors. Taken together, our simulations demonstrate the robustness of splicing outcomes and reveal that quantitative insights into kinetic competition of co-transcriptional events are required to fully understand this important mechanism of gene expression diversity.
Collapse
Affiliation(s)
- Timur Horn
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Alison Gosliga
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany
| | - Congxin Li
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany
| | - Mihaela Enculescu
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
3
|
Gao C, Lu S, Zhou R, Ding J, Fan J, Han B, Chen M, Wang B, Cao Y. Phylogenetic analysis and stress response of the plant U2 small nuclear ribonucleoprotein B″ gene family. BMC Genomics 2022; 23:744. [DOI: 10.1186/s12864-022-08956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Alternative splicing (AS) is an important channel for gene expression regulation and protein diversification, in addition to a major reason for the considerable differences in the number of genes and proteins in eukaryotes. In plants, U2 small nuclear ribonucleoprotein B″ (U2B″), a component of splicing complex U2 snRNP, plays an important role in AS. Currently, few studies have investigated plant U2B″, and its mechanism remains unclear.
Result
Phylogenetic analysis, including gene and protein structures, revealed that U2B″ is highly conserved in plants and typically contains two RNA recognition motifs. Subcellular localisation showed that OsU2B″ is located in the nucleus and cytoplasm, indicating that it has broad functions throughout the cell. Elemental analysis of the promoter region showed that it responded to numerous external stimuli, including hormones, stress, and light. Subsequent qPCR experiments examining response to stress (cold, salt, drought, and heavy metal cadmium) corroborated the findings. The prediction results of protein–protein interactions showed that its function is largely through a single pathway, mainly through interaction with snRNP proteins.
Conclusion
U2B″ is highly conserved in the plant kingdom, functions in the nucleus and cytoplasm, and participates in a wide range of processes in plant growth and development.
Collapse
|
4
|
Liu X, Li Z, Zheng Y, Wang W, He P, Guan K, Wu T, Wang X, Zhang X. Extracellular vesicles isolated from hyperuricemia patients might aggravate airway inflammation of COPD via senescence-associated pathway. J Inflamm (Lond) 2022; 19:18. [PMID: 36324164 PMCID: PMC9628085 DOI: 10.1186/s12950-022-00315-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUNDS Chronic obstructive pulmonary disease (COPD) is a major health issue resulting in significant mortality worldwide. Due to the high heterogeneity and unclear pathogenesis, the management and therapy of COPD are still challenging until now. Elevated serum uric acid(SUA) levels seem to be associated with the inflammatory level in patients with COPD. However, the underlying mechanism is not yet clearly established. In the current research, we aim to elucidate the effect of high SUA levels on airway inflammation among COPD patients. METHODS Through bioinformatic analysis, the common potential key genes were determined in both COPD and hyperuricemia (HUA) patients. A total of 68 COPD patients aged 50-75-year were included in the study, and their clinical parameters, including baseline characteristics, lung function test, as well as blood chemistry test were recorded. These parameters were then compared between the COPD patients with and without HUA. Hematoxylin & Eosin (HE), immunofluorescence (IF), and Masson trichrome staining were performed to demonstrate the pathological changes in the lung tissues. Furthermore, we isolated extracellular vesicles (EVs) from plasma, sputum, and bronchoalveolar lavage fluid (BALF) samples and detected the expression of inflammatory factor (Interleukin-6 (IL-6), IL-8 and COPD related proteases (antitrypsin and elastase) between two groups. Additionally, we treated the human bronchial epithelial (HBE) cells with cigarette smoke extract (CSE), and EVs were derived from the plasma in vitro experiments. The critical pathway involving the relationship between COPD and HUA was eventually validated based on the results of RNA sequencing (RNA-seq) and western blot (WB). RESULTS In the study, the COPD patients co-existing with HUA were found to have more loss of pulmonary function compared with those COPD patients without HUA. The lung tissue samples of patients who had co-existing COPD and HUA indicated greater inflammatory cell infiltration, more severe airway destruction and even fibrosis. Furthermore, the high SUA level could exacerbate the progress of airway inflammation in COPD through the transfer of EVs. In vitro experiments, we determined that EVs isolated from plasma, sputum, and BALF played pivotal roles in the CSE-induced inflammation of HBE. The EVs in HUA patients might exacerbate both systemic inflammation and airway inflammatory response via the senescence-related pathway. CONCLUSION The pulmonary function and clinical indicators of COPD patients with HUA were worse than those without HUA, which may be caused by the increased airway inflammatory response through the EVs in the patient's peripheral blood. Moreover, it might mediate the EVs via senescence-related pathways in COPD patients with HUA.
Collapse
Affiliation(s)
- Xuanqi Liu
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413087.90000 0004 1755 3939Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Institute of Infectious Disease and Biosecurity, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Li
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Yang Zheng
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Wenhao Wang
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Peiqing He
- grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Kangwei Guan
- grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Tao Wu
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Xiaojun Wang
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Xuelin Zhang
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| |
Collapse
|
5
|
Llinas RJ, Xiong JQ, Clark NM, Burkhart SE, Bartel B. An Arabidopsis pre-RNA processing8a (prp8a) missense allele restores splicing of a subset of mis-spliced mRNAs. PLANT PHYSIOLOGY 2022; 189:2175-2192. [PMID: 35608297 PMCID: PMC9342983 DOI: 10.1093/plphys/kiac221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Eukaryotic precursor mRNAs often harbor noncoding introns that must be removed prior to translation. Accurate splicing of precursor messenger RNA depends on placement and assembly of small nuclear ribonucleoprotein (snRNP) sub-complexes of the spliceosome. Yeast (Saccharomyces cerevisiae) studies established a role in splice-site selection for PRE-RNA PROCESSING8 (PRP8), a conserved spliceosome scaffolding protein of the U5 snRNP. However, analogous splice-site selection studies in multicellular eukaryotes are lacking. Such studies are crucial for a comprehensive understanding of alternative splicing, which is extensive in plants and animals but limited in yeast. In this work, we describe an Arabidopsis (Arabidopsis thaliana) prp8a mutant that modulates splice-site selection. We isolated prp8a-14 from a screen for suppressors of pex14-6, which carries a splice-site mutation in the PEROXIN14 (PEX14) peroxisome biogenesis gene. To elucidate Arabidopsis PRP8A function in spliceosome fidelity, we combined prp8a-14 with various pex14 splice-site mutations and monitored the double mutants for physiological and molecular consequences of dysfunctional and functional peroxisomes that correspond to impaired and recovered splicing, respectively. prp8a-14 restored splicing and PEX14 function to alleles with mutations in the exonic guanine of the 5'-splice site but did not restore splicing or function to alleles with mutations in the intronic guanine of 5'- or 3'-splice sites. We used RNA-seq to reveal the systemic impact of prp8a-14 and found hundreds of differentially spliced transcripts and thousands of transcripts with significantly altered levels. Among differentially spliced transcripts, prp8a-14 significantly altered 5'- and 3'-splice-site utilization to favor sites resulting in shorter introns. This study provides a genetic platform for probing splicing in plants and hints at a role for plant PRP8 in splice-site selection.
Collapse
Affiliation(s)
- Roxanna J Llinas
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| | | | - Natalie M Clark
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Sarah E Burkhart
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
6
|
Murphy AJ, Li AH, Li P, Sun H. Therapeutic Targeting of Alternative Splicing: A New Frontier in Cancer Treatment. Front Oncol 2022; 12:868664. [PMID: 35463320 PMCID: PMC9027816 DOI: 10.3389/fonc.2022.868664] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 01/05/2023] Open
Abstract
The ability for cells to harness alternative splicing enables them to diversify their proteome in order to carry out complex biological functions and adapt to external and internal stimuli. The spliceosome is the multiprotein-RNA complex charged with the intricate task of alternative splicing. Aberrant splicing can arise from abnormal spliceosomes or splicing factors and drive cancer development and progression. This review will provide an overview of the alternative splicing process and aberrant splicing in cancer, with a focus on serine/arginine-rich (SR) proteins and their recently reported roles in cancer development and progression and beyond. Recent mapping of the spliceosome, its associated splicing factors, and their relationship to cancer have opened the door to novel therapeutic approaches that capitalize on the widespread influence of alternative splicing. We conclude by discussing small molecule inhibitors of the spliceosome that have been identified in an evolving era of cancer treatment.
Collapse
Affiliation(s)
- Anthony J. Murphy
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Alex H. Li
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Lu S, Gao C, Wang Y, He Y, Du J, Chen M, Zhao H, Fang H, Wang B, Cao Y. Phylogenetic Analysis of the Plant U2 snRNP Auxiliary Factor Large Subunit A Gene Family in Response to Developmental Cues and Environmental Stimuli. FRONTIERS IN PLANT SCIENCE 2021; 12:739671. [PMID: 34868124 PMCID: PMC8635922 DOI: 10.3389/fpls.2021.739671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
In all organisms, splicing occurs through the formation of spliceosome complexes, and splicing auxiliary factors are essential during splicing. U2AF65 is a crucial splicing cofactor, and the two typical RNA-recognition motifs at its center recognize and bind the polypyrimidine sequence located between the intron branch site and the 3'-splice site. U2AF65A is a member of the U2AF65 gene family, with pivotal roles in diseases in mammals, specifically humans; however, few studies have investigated plant U2AF65A, and its specific functions are poorly understood. Therefore, in the present study, we systematically identified U2AF65A in plant species from algae to angiosperms. Based on 113 putative U2AF65A sequences from 33 plant species, phylogenetic analyses were performed, followed by basic bioinformatics, including the comparisons of gene structure, protein domains, promoter motifs, and gene expression levels. In addition, using rice as the model crop, we demonstrated that the OsU2AF65A protein is localized to the nucleus and cytoplasm, and it is involved in responses to various stresses, such as drought, high salinity, low temperature, and heavy metal exposure (e.g., cadmium). Using Arabidopsis thaliana and rice mutants, we demonstrated that U2AF65A is involved in the accumulation of plant biomass, growth of hypocotyl upon thermal stimulation, and reduction of tolerance of high temperature stress. These findings offer an overview of the U2AF65 gene family and its stress response functions, serving as the reference for further comprehensive functional studies of the essential specific splicing cofactor U2AF65A in the plant kingdom.
Collapse
Affiliation(s)
- Shuai Lu
- School of Life Sciences, Nantong University, Nantong, China
| | - Cong Gao
- School of Life Sciences, Nantong University, Nantong, China
| | - Yongzhou Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yingying He
- School of Life Sciences, Nantong University, Nantong, China
| | - Junrong Du
- School of Life Sciences, Nantong University, Nantong, China
| | - Moxian Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hua Zhao
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yunying Cao
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
8
|
Mendel M, Delaney K, Pandey RR, Chen KM, Wenda JM, Vågbø CB, Steiner FA, Homolka D, Pillai RS. Splice site m 6A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell 2021; 184:3125-3142.e25. [PMID: 33930289 PMCID: PMC8208822 DOI: 10.1016/j.cell.2021.03.062] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
The N6-methyladenosine (m6A) RNA modification is used widely to alter the fate of mRNAs. Here we demonstrate that the C. elegans writer METT-10 (the ortholog of mouse METTL16) deposits an m6A mark on the 3′ splice site (AG) of the S-adenosylmethionine (SAM) synthetase pre-mRNA, which inhibits its proper splicing and protein production. The mechanism is triggered by a rich diet and acts as an m6A-mediated switch to stop SAM production and regulate its homeostasis. Although the mammalian SAM synthetase pre-mRNA is not regulated via this mechanism, we show that splicing inhibition by 3′ splice site m6A is conserved in mammals. The modification functions by physically preventing the essential splicing factor U2AF35 from recognizing the 3′ splice site. We propose that use of splice-site m6A is an ancient mechanism for splicing regulation. m6A deposited at 3′ splice site by worm METT-10 inhibits splicing Methylation blocks 3′ splice site recognition by splicing factor U2AF35 Methylation and splicing inhibition is a response to change in worm diet Splicing inhibition by 3′ splice site m6A is conserved in mammals
Collapse
Affiliation(s)
- Mateusz Mendel
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Kamila Delaney
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Radha Raman Pandey
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Kuan-Ming Chen
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Joanna M Wenda
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Cathrine Broberg Vågbø
- Proteomics and Modomics Experimental Core (PROMEC), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) and St. Olavs Hospital Central Staff, Trondheim, Norway
| | - Florian A Steiner
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - David Homolka
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | - Ramesh S Pillai
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
9
|
Fernandes N, Buchan JR. RNAs as Regulators of Cellular Matchmaking. Front Mol Biosci 2021; 8:634146. [PMID: 33898516 PMCID: PMC8062979 DOI: 10.3389/fmolb.2021.634146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/22/2021] [Indexed: 12/30/2022] Open
Abstract
RNA molecules are increasingly being identified as facilitating or impeding the interaction of proteins and nucleic acids, serving as so-called scaffolds or decoys. Long non-coding RNAs have been commonly implicated in such roles, particularly in the regulation of nuclear processes including chromosome topology, regulation of chromatin state and gene transcription, and assembly of nuclear biomolecular condensates such as paraspeckles. Recently, an increased awareness of cytoplasmic RNA scaffolds and decoys has begun to emerge, including the identification of non-coding regions of mRNAs that can also function in a scaffold-like manner to regulate interactions of nascently translated proteins. Collectively, cytoplasmic RNA scaffolds and decoys are now implicated in processes such as mRNA translation, decay, protein localization, protein degradation and assembly of cytoplasmic biomolecular condensates such as P-bodies. Here, we review examples of RNA scaffolds and decoys in both the nucleus and cytoplasm, illustrating common themes, the suitability of RNA to such roles, and future challenges in identifying and better understanding RNA scaffolding and decoy functions.
Collapse
Affiliation(s)
| | - J. Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
Curaba J, Bostan H, Cavagnaro PF, Senalik D, Mengist MF, Zhao Y, Simon PW, Iorizzo M. Identification of an SCPL Gene Controlling Anthocyanin Acylation in Carrot ( Daucus carota L.) Root. FRONTIERS IN PLANT SCIENCE 2020; 10:1770. [PMID: 32082341 PMCID: PMC7005140 DOI: 10.3389/fpls.2019.01770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 05/27/2023]
Abstract
Anthocyanins are natural health promoting pigments that can be produced in large quantities in some purple carrot cultivars. Decoration patterns of anthocyanins, such as acylation, can greatly influence their stability and biological properties and use in the food industry as nutraceuticals and natural colorants. Despite recent advances made toward understanding the genetic control of anthocyanin accumulation in purple carrot, the genetic mechanism controlling acylation of anthocyanin in carrot root have not been studied yet. In the present study, we performed fine mapping combined with gene expression analyses (RNA-Seq and RT-qPCR) to identify the genetic factor conditioning the accumulation of non-acylated (Cy3XGG) versus acylated (Cy3XFGG and Cy3XSGG) cyanidin derivatives, in three carrot populations. Segregation and mapping analysis pointed to a single gene with dominant effect controlling anthocyanin acylation in the root, located in a 576kb region containing 29 predicted genes. Orthologous and phylogenetic analyses enabled the identification of a cluster of three SCPL-acyltransferases coding genes within this region. Comparative transcriptome analysis indicated that only one of these three genes, DcSCPL1, was always expressed in association with anthocyanin pigmentation in the root and was co-expressed with DcMYB7, a gene known to activate anthocyanin biosynthetic genes in carrot. DcSCPL1 sequence analysis, in root tissue containing a low level of acylated anthocyanins, demonstrated the presence of an insertion causing an abnormal splicing of the 3rd exon during mRNA editing, likely resulting in the production of a non-functional acyltransferase and explaining the reduced acylation phenotype. This study provides strong linkage-mapping and functional evidences for the candidacy of DcSCPL1 as a primary regulator of anthocyanin acylation in carrot storage root.
Collapse
Affiliation(s)
- Julien Curaba
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Hamed Bostan
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Pablo F. Cavagnaro
- National Scientific and Technical Research Council (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA) E.E.A., La Consulta, Mendoza, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Douglas Senalik
- Department of Horticulture, University of Wisconsin–Madison, Madison, WI, United States
- Vegetable Crops Research Unit, US Department of Agriculture–Agricultural Research Service, Madison, WI, United States
| | - Molla Fentie Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Yunyang Zhao
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Philipp W. Simon
- Department of Horticulture, University of Wisconsin–Madison, Madison, WI, United States
- Vegetable Crops Research Unit, US Department of Agriculture–Agricultural Research Service, Madison, WI, United States
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
11
|
Hong W, Zhang W, Guan R, Liang Y, Hu S, Ji Y, Liu M, Lu H, Yu M, Ma L. Genome-wide profiling of prognosis-related alternative splicing signatures in sarcoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:557. [PMID: 31807538 PMCID: PMC6861818 DOI: 10.21037/atm.2019.09.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sarcomas (SARCs) are rare malignant tumors with poor prognosis. Increasing evidence has suggested that aberrant alternative splicing (AS) is strongly associated with tumor initiation and progression. We considered whether survival-related AS events might serve as prognosis predictors and underlying targeted molecules in SARC treatment. METHODS RNA-Seq data of the SARC cohort were downloaded from The Cancer Genome Atlas (TCGA) database. Survival-related AS events were selected by univariate and multivariate Cox regression analyses. Metascape was used for constructing a gene interaction network and performing functional enrichment analysis. Then, prognosis predictors were established based on statistically significant survival-related AS events and evaluated by receiver operator characteristic (ROC) curve analysis. Finally, the potential regulatory network was analyzed via Pearson's correlation between survival-related AS events and splicing factors (SFs). RESULTS A total of 3,610 AS events and 2,291 genes were found to be prognosis-related in 261 SARC samples. The focal adhesion pathway was identified as the most critical molecular mechanism corresponding to poor prognosis. Notably, several prognosis predictors based on survival-related AS events showed excellent performance in prognosis prediction. The area under the curve of the ROC of the risk score was 0.85 in the integrated predictor. The splicing network proved complicated regulation between prognosis-related SFs and AS events. Also, driver gene mutations were significantly associated with AS in SARC patients. CONCLUSIONS Survival-related AS events may become ideal indictors for the prognosis prediction of SARCs. Corresponding splicing regulatory mechanisms are worth further exploration.
Collapse
Affiliation(s)
- Weifeng Hong
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Weicong Zhang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Renguo Guan
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Yuying Liang
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Shixiong Hu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Yayun Ji
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Mouyuan Liu
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Hai Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Min Yu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Liheng Ma
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
12
|
Abstract
Nucleolin is an RNA binding protein that is involved in many post-transcriptional regulation steps of messenger RNAs in addition to its nucleolar role in ribosomal RNA transcription and assembly in pre-ribosomes. Acetylated nucleolin was found to be associated with nuclear speckles and to co-localize with the splicing factor SC35. Previous nuclear pull down of nucleolin identified several splicing components and factors involved in RNA polymerase II transcription associated with nucleolin. In this report, we show that these splicing components are specifics of the pre-catalytic A and B spliceosomes, while proteins recruited in the Bact, C and P complexes are absent from the nucleolin interacting proteins. Furthermore, we show that acetylated nucleolin co-localized with P-SF3B1, a marker of co-transcriptional active spliceosomes. P-SF3B1 complexes can be pulled down with nucleolin specific antibodies. Interestingly, the alternative splicing of Fibronectin at the IIICS and EDB sites was affected by nucleolin depletion. These data are consistent with a model where nucleolin could be a factor bridging RNA polymerase II transcription and assembly of pre-catalytic spliceosome similarly to its function in the co-transcriptional maturation of pre-rRNA.
Collapse
|
13
|
Structural and Functional Insights into Human Nuclear Cyclophilins. Biomolecules 2018; 8:biom8040161. [PMID: 30518120 PMCID: PMC6315705 DOI: 10.3390/biom8040161] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 02/05/2023] Open
Abstract
The peptidyl prolyl isomerases (PPI) of the cyclophilin type are distributed throughout human cells, including eight found solely in the nucleus. Nuclear cyclophilins are involved in complexes that regulate chromatin modification, transcription, and pre-mRNA splicing. This review collects what is known about the eight human nuclear cyclophilins: peptidyl prolyl isomerase H (PPIH), peptidyl prolyl isomerase E (PPIE), peptidyl prolyl isomerase-like 1 (PPIL1), peptidyl prolyl isomerase-like 2 (PPIL2), peptidyl prolyl isomerase-like 3 (PPIL3), peptidyl prolyl isomerase G (PPIG), spliceosome-associated protein CWC27 homolog (CWC27), and peptidyl prolyl isomerase domain and WD repeat-containing protein 1 (PPWD1). Each “spliceophilin” is evaluated in relation to the spliceosomal complex in which it has been studied, and current work studying the biological roles of these cyclophilins in the nucleus are discussed. The eight human splicing complexes available in the Protein Data Bank (PDB) are analyzed from the viewpoint of the human spliceophilins. Future directions in structural and cellular biology, and the importance of developing spliceophilin-specific inhibitors, are considered.
Collapse
|