1
|
Lin L, Huang H, Zhang X, Dong L, Chen Y. Hydrogen-oxidizing bacteria and their applications in resource recovery and pollutant removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155559. [PMID: 35483467 DOI: 10.1016/j.scitotenv.2022.155559] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen oxidizing bacteria (HOB), a type of chemoautotroph, are a group of bacteria from different genera that share the ability to oxidize H2 and fix CO2 to provide energy and synthesize cellular material. Recently, HOB have received growing attention due to their potential for CO2 capture and waste recovery. This review provides a comprehensive overview of the biological characteristics of HOB and their application in resource recovery and pollutant removal. Firstly, the enzymes, genes and corresponding regulation systems responsible for the key metabolic processes of HOB are discussed in detail. Then, the enrichment and cultivation methods including the coupled water splitting-biosynthetic system cultivation, mixed cultivation and two-stage cultivation strategies for HOB are summarized, which is the critical prerequisite for their application. On the basis, recent advances of HOB application in the recovery of high-value products and the removal of pollutants are presented. Finally, the key points for future investigation are proposed that more attention should be paid to the main limitations in the large-scale industrial application of HOB, including the mass transfer rate of the gases, the safety of the production processes and products, and the commercial value of the products.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xin Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co. LTD, 901 Zhongshan North Second Rd, Shanghai 200092, China
| | - Lei Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Municipal Engineering Design Institute (Group) Co. LTD, 901 Zhongshan North Second Rd, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
2
|
McDonald AG, Tipton KF. Enzyme Nomenclature and Classification: the State of the Art. FEBS J 2021; 290:2214-2231. [PMID: 34773359 DOI: 10.1111/febs.16274] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
The IUBMB Enzyme classification system, available at the IUBMB ExplorEnz website, uses a four component number (the EC number) that identifies an enzyme in terms of reaction catalysed. There were originally six recognised groups of enzymes: Oxidoreductases (EC 1), Transferases (EC 2), Hydrolases, Lyases (EC 4), Isomerases (EC 5) and Ligases (EC 6). Of these the lyases, which are defined as "enzymes that cleave C-C, C-O, C-N and other bonds by means other than by hydrolysis or oxidation" present particular recognition and classification problems. Recently a new class, the Translocases (EC 7) has been added, which incorporates enzymes that catalyse the movement of ions or molecules across membranes or their separation within membranes. A new subclass of the isomerases has also been included for those enzymes that alter the conformations of proteins and nucleic acids. Newly reported enzymes are being regularly added to the list after validation and where new information affects the classification of an existing entry, a new EC number is created, but the old one is not re-used.
Collapse
Affiliation(s)
- Andrew G McDonald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Keith F Tipton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
3
|
Sharkey TD. Pentose Phosphate Pathway Reactions in Photosynthesizing Cells. Cells 2021; 10:cells10061547. [PMID: 34207480 PMCID: PMC8234502 DOI: 10.3390/cells10061547] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
The pentose phosphate pathway (PPP) is divided into an oxidative branch that makes pentose phosphates and a non-oxidative branch that consumes pentose phosphates, though the non-oxidative branch is considered reversible. A modified version of the non-oxidative branch is a critical component of the Calvin–Benson cycle that converts CO2 into sugar. The reaction sequence in the Calvin–Benson cycle is from triose phosphates to pentose phosphates, the opposite of the typical direction of the non-oxidative PPP. The photosynthetic direction is favored by replacing the transaldolase step of the normal non-oxidative PPP with a second aldolase reaction plus sedoheptulose-1,7-bisphosphatase. This can be considered an anabolic version of the non-oxidative PPP and is found in a few situations other than photosynthesis. In addition to the strong association of the non-oxidative PPP with photosynthesis metabolism, there is recent evidence that the oxidative PPP reactions are also important in photosynthesizing cells. These reactions can form a shunt around the non-oxidative PPP section of the Calvin–Benson cycle, consuming three ATP per glucose 6-phosphate consumed. A constitutive operation of this shunt occurs in the cytosol and gives rise to an unusual labeling pattern of photosynthetic metabolites while an inducible shunt in the stroma may occur in response to stress.
Collapse
Affiliation(s)
- Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Plant Resilience Institute, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
4
|
Source of 12C in Calvin-Benson cycle intermediates and isoprene emitted from plant leaves fed with 13CO2. Biochem J 2021; 477:3237-3252. [PMID: 32815532 DOI: 10.1042/bcj20200480] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Abstract
Feeding 14CO2 was crucial to uncovering the path of carbon in photosynthesis. Feeding 13CO2 to photosynthesizing leaves emitting isoprene has been used to develop hypotheses about the sources of carbon for the methylerythritol 4-phosphate pathway, which makes the precursors for terpene synthesis in chloroplasts and bacteria. Both photosynthesis and isoprene studies found that products label very quickly (<10 min) up to 80-90% but the last 10-20% of labeling requires hours indicating a source of 12C during photosynthesis and isoprene emission. Furthermore, studies with isoprene showed that the proportion of slow label could vary significantly. This was interpreted as a variable contribution of carbon from sources other than the Calvin-Benson cycle (CBC) feeding the methylerythritol 4-phosphate pathway. Here, we measured the degree of label in isoprene and photosynthetic metabolites 20 min after beginning to feed 13CO2. Isoprene labeling was the same as labeling of photosynthesis intermediates. High temperature reduced the label in isoprene and photosynthesis intermediates by the same amount indicating no role for alternative carbon sources for isoprene. A model assuming glucose, fructose, and/or sucrose reenters the CBC as ribulose 5-phosphate through a cytosolic shunt involving glucose 6-phosphate dehydrogenase was consistent with the observations.
Collapse
|
5
|
Electrocatalytic CO2 fixation by regenerating reduced cofactor NADH during Calvin Cycle using glassy carbon electrode. PLoS One 2020; 15:e0239340. [PMID: 32941542 PMCID: PMC7497995 DOI: 10.1371/journal.pone.0239340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022] Open
Abstract
In this study, an enzymatic pathway has been developed to replicate the Calvin Cycle by creating the individual steps of the carbon cycle in a bioreactor. The technology known as “artificial photosynthesis” converts CO2 emissions into a variety of intermediates that serve as precursors to high-value products. CO2, light, water, and electricity were used as feedstock. An electrochemical reactor was also studied for the regeneration of active NADH operating at constant electrode potential. Initially, a batch electrochemical reactor containing 80 mL of 0.2 mM NAD+ in Tris-buffer (pH 7.40) was used to evaluate the electrode material operating at normal temperature and pressure. The results showed that the cathode is highly electrocatalytically efficient and selective to regenerate 97.45±0.8% of NADH from NAD+ at electrode potential of -2.3 V vs. mercury standard electrode (MSE). The NADH regeneration system was then integrated with ATP regeneration system and bioreactor containing Ribulose bisphosphate carboxylase/oxygenase (RuBisCO). NADH was regenerated successfully during the process electrochemically and then was used by the enzymatic reaction to produce triose phosphate and 3-Phosphoglycerate (3GPA).
Collapse
|
6
|
Ji X, Li X, Wu S, Hou M, Zhao Y. Effects of graphene oxide on algal cellular stress response: Evaluating metabolic characters of carbon fixation and nutrient removal. CHEMOSPHERE 2020; 252:126566. [PMID: 32222521 DOI: 10.1016/j.chemosphere.2020.126566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
The effects of different concentrations of graphene oxide (GO) on intracellular metabolism in Chlorella vulgaris (C. vulgaris) and removal of nitrogen and phosphorus nutrients by C. vulgaris from synthetic wastewater were studied. The results demonstrated that cell division of Chlorella vulgaris increased at 24 h and decreased at 96 h after exposure to different concentrations of GO. The removal rates of total nitrogen (TN), ammoniacal nitrogen (NH3-N), phosphate (PO43--P), and chemical oxygen demand (COD) were 24.1%, 70.0%, 37.0%, and 39.6%, respectively, when the concentration of GO was 0.01 mg/L 10 mg/L GO induced severe plasmolysis and cytoplasmic contraction. Furthermore, the protein-like exopolysaccharide (EPS) content of algal cells exposed to 10 mg/L GO decrease to 10.8% of the control group. Simultaneously, the reactive oxygen species (ROS) level was 175.4% of control group. The biological responses to 10 mg/L GO included increase in ROS level, inhibition of saccharide metabolism, and degradation of amino acids. In addition, high concentrations of 10 mg/L GO weakened the carbon fixation process in algal cells. These stress-response behaviors increased cell permeability and oxidative stress. Overall, these findings provide new insights regarding the effects of GO on algal cellular stress responses.
Collapse
Affiliation(s)
- Xiyan Ji
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Xin Li
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Shichao Wu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Yongjun Zhao
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| |
Collapse
|
7
|
Li J, Weraduwage SM, Preiser AL, Tietz S, Weise SE, Strand DD, Froehlich JE, Kramer DM, Hu J, Sharkey TD. A Cytosolic Bypass and G6P Shunt in Plants Lacking Peroxisomal Hydroxypyruvate Reductase. PLANT PHYSIOLOGY 2019; 180:783-792. [PMID: 30886114 PMCID: PMC6548278 DOI: 10.1104/pp.19.00256] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 05/18/2023]
Abstract
The oxygenation of ribulose 1,5-bisphosphate by Rubisco is the first step in photorespiration and reduces the efficiency of photosynthesis in C3 plants. Our recent data indicate that mutants in photorespiration have increased rates of photosynthetic cyclic electron flow around photosystem I. We investigated mutant lines lacking peroxisomal hydroxypyruvate reductase to determine if there are connections between 2-phosphoglycolate accumulation and cyclic electron flow in Arabidopsis (Arabidopsis thaliana). We found that 2-phosphoglycolate is a competitive inhibitor of triose phosphate isomerase, an enzyme in the Calvin-Benson cycle that converts glyceraldehyde 3-phosphate to dihydroxyacetone phosphate. This block in metabolism could be overcome if glyceraldehyde 3-phosphate is exported to the cytosol, where cytosolic triose phosphate isomerase could convert it to dihydroxyacetone phosphate. We found evidence that carbon is reimported as glucose-6-phosphate, forming a cytosolic bypass around the block of stromal triose phosphate isomerase. However, this also stimulates a glucose-6-phosphate shunt, which consumes ATP, which can be compensated by higher rates of cyclic electron flow.
Collapse
Affiliation(s)
- Jiying Li
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Sarathi M Weraduwage
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Alyssa L Preiser
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Stefanie Tietz
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Sean E Weise
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Deserah D Strand
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - John E Froehlich
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - David M Kramer
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Thomas D Sharkey
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
8
|
Sharkey TD. Discovery of the canonical Calvin-Benson cycle. PHOTOSYNTHESIS RESEARCH 2019; 140:235-252. [PMID: 30374727 DOI: 10.1007/s11120-018-0600-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/18/2018] [Indexed: 05/12/2023]
Abstract
It has been 65 years since the Calvin-Benson cycle was first formulated. In this paper, the development of the concepts that are critical to the cycle is traced and the contributions of Calvin, Benson, and Bassham are discussed. Some simplified views often found in text books such as ascending paper chromatography and the use of the "lollipop" for short labeling are discussed and further details given. Key discoveries that underpinned elucidation of the cycle such as the importance of sedoheptulose phosphate and ribulose 1,5-bisphosphate are described. The interchange of ideas between other researchers working on what is now called the pentose phosphate pathway and the development of the ideas of Calvin and Benson are explored while the gluconeogenic aspects of the cycle are emphasized. Concerns raised about anomalies of label distribution in glucose are considered. Other carbon metabolism pathways associated with the Calvin-Benson cycle are also described. Finally, there is a section describing the rift between Calvin and Benson.
Collapse
Affiliation(s)
- Thomas D Sharkey
- MSU DOE Plant Research Laboratory, Plant Resilience Institute, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|