1
|
Rueff AS, van Raaphorst R, Aggarwal SD, Santos-Moreno J, Laloux G, Schaerli Y, Weiser JN, Veening JW. Synthetic genetic oscillators demonstrate the functional importance of phenotypic variation in pneumococcal-host interactions. Nat Commun 2023; 14:7454. [PMID: 37978173 PMCID: PMC10656556 DOI: 10.1038/s41467-023-43241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Phenotypic variation is the phenomenon in which clonal cells display different traits even under identical environmental conditions. This plasticity is thought to be important for processes including bacterial virulence, but direct evidence for its relevance is often lacking. For instance, variation in capsule production in the human pathogen Streptococcus pneumoniae has been linked to different clinical outcomes, but the exact relationship between variation and pathogenesis is not well understood due to complex natural regulation. In this study, we use synthetic oscillatory gene regulatory networks (GRNs) based on CRISPR interference (CRISPRi) together with live cell imaging and cell tracking within microfluidics devices to mimic and test the biological function of bacterial phenotypic variation. We provide a universally applicable approach for engineering intricate GRNs using only two components: dCas9 and extended sgRNAs (ext-sgRNAs). Our findings demonstrate that variation in capsule production is beneficial for pneumococcal fitness in traits associated with pathogenesis providing conclusive evidence for this longstanding question.
Collapse
Affiliation(s)
- Anne-Stéphanie Rueff
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Renske van Raaphorst
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200, Brussels, Belgium
| | - Surya D Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Javier Santos-Moreno
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
- Pompeu Fabra University, Barcelona, Spain
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200, Brussels, Belgium
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Rueff AS, van Raaphorst R, Aggarwal S, Santos-Moreno J, Laloux G, Schaerli Y, Weiser JN, Veening JW. Rewiring capsule production by CRISPRi-based genetic oscillators demonstrates a functional role of phenotypic variation in pneumococcal-host interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543575. [PMID: 37398107 PMCID: PMC10312626 DOI: 10.1101/2023.06.03.543575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Phenotypic variation is the phenomenon in which clonal cells display different traits even under identical environmental conditions. This plasticity is thought to be important for processes including bacterial virulence1-8, but direct evidence for its relevance is often lacking. For instance, variation in capsule production in the human pathogen Streptococcus pneumoniae has been linked to different clinical outcomes9-14, but the exact relationship between variation and pathogenesis is not well understood due to complex natural regulation15-20. In this study, we used synthetic oscillatory gene regulatory networks (GRNs) based on CRISPR interference together with live cell microscopy and cell tracking within microfluidics devices to mimic and test the biological function of bacterial phenotypic variation. We provide a universally applicable approach for engineering intricate GRNs using only two components: dCas9 and extended sgRNAs (ext-sgRNAs). Our findings demonstrate that variation in capsule production is beneficial for pneumococcal fitness in traits associated with pathogenesis providing conclusive evidence for this longstanding question.
Collapse
Affiliation(s)
- Anne-Stéphanie Rueff
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Renske van Raaphorst
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Surya Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Javier Santos-Moreno
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- Present address: Pompeu Fabra University, Barcelona, Spain
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Ilan Y. Making use of noise in biological systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:83-90. [PMID: 36640927 DOI: 10.1016/j.pbiomolbio.2023.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Disorder and noise are inherent in biological systems. They are required to provide systems with the advantages required for proper functioning. Noise is a part of the flexibility and plasticity of biological systems. It provides systems with increased routes, improves information transfer, and assists in response triggers. This paper reviews recent studies on noise at the genome, cellular, and whole organ levels. We focus on the need to use noise in system engineering. We present some of the challenges faced in studying noise. Optimizing the efficiency of complex systems requires a degree of variability in their functions within certain limits. Constrained noise can be considered a method for improving system robustness by regulating noise levels in continuously dynamic settings. The digital pill-based artificial intelligence (AI)-based platform is the first to implement second-generation AI comprising variability-based signatures. This platform enhances the efficacy of the therapeutic regimens. Systems requiring variability and mechanisms regulating noise are mandatory for understanding biological functions.
Collapse
Affiliation(s)
- Yaron Ilan
- Hebrew University, Faculty of Medicine, Department of Medicine, Hadassah Medical Center, POB 1200, IL91120, Jerusalem, Israel.
| |
Collapse
|
5
|
Dräger A, Helikar T, Barberis M, Birtwistle M, Calzone L, Chaouiya C, Hasenauer J, Karr JR, Niarakis A, Rodríguez Martínez M, Saez-Rodriguez J, Thakar J. SysMod: the ISCB community for data-driven computational modelling and multi-scale analysis of biological systems. Bioinformatics 2021; 37:3702-3706. [PMID: 34179955 PMCID: PMC8570808 DOI: 10.1093/bioinformatics/btab229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Computational models of biological systems can exploit a broad range of rapidly developing approaches, including novel experimental approaches, bioinformatics data analysis, emerging modelling paradigms, data standards and algorithms. A discussion about the most recent advances among experts from various domains is crucial to foster data-driven computational modelling and its growing use in assessing and predicting the behaviour of biological systems. Intending to encourage the development of tools, approaches and predictive models, and to deepen our understanding of biological systems, the Community of Special Interest (COSI) was launched in Computational Modelling of Biological Systems (SysMod) in 2016. SysMod’s main activity is an annual meeting at the Intelligent Systems for Molecular Biology (ISMB) conference, which brings together computer scientists, biologists, mathematicians, engineers, computational and systems biologists. In the five years since its inception, SysMod has evolved into a dynamic and expanding community, as the increasing number of contributions and participants illustrate. SysMod maintains several online resources to facilitate interaction among the community members, including an online forum, a calendar of relevant meetings and a YouTube channel with talks and lectures of interest for the modelling community. For more than half a decade, the growing interest in computational systems modelling and multi-scale data integration has inspired and supported the SysMod community. Its members get progressively more involved and actively contribute to the annual COSI meeting and several related community workshops and meetings, focusing on specific topics, including particular techniques for computational modelling or standardisation efforts.
Collapse
Affiliation(s)
- Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany.,Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site, Tübingen, Germany.,Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | - Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK.,Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Marc Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| | - Laurence Calzone
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, F-75005 Paris, France
| | - Claudine Chaouiya
- Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille 2780-156, France.,Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Jan Hasenauer
- Interdisicplinary Research Unit Mathematics and Life Sciences, University of Bonn, Bonn 53115, Germany
| | - Jonathan R Karr
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Niarakis
- GenHotel, University of Evry, University of Paris-Saclay, Genopole, Évry 91025, France.,Lifeware Group, Inria Saclay-île de France, 91120 Palaiseau, France
| | | | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute of Computational Biomedicine, 69120 Heidelberg, Germany
| | - Juilee Thakar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.,Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|