1
|
Sun B, Huang J, Kong L, Gao C, Zhao F, Shen J, Wang T, Li K, Wang L, Wang Y, Halterman DA, Dong S. Alternative splicing of a potato disease resistance gene maintains homeostasis between growth and immunity. THE PLANT CELL 2024; 36:3729-3750. [PMID: 38941447 PMCID: PMC11371151 DOI: 10.1093/plcell/koae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Plants possess a robust and sophisticated innate immune system against pathogens and must balance growth with rapid pathogen detection and defense. The intracellular receptors with nucleotide-binding leucine-rich repeat (NLR) motifs recognize pathogen-derived effector proteins and thereby trigger the immune response. The expression of genes encoding NLR receptors is precisely controlled in multifaceted ways. The alternative splicing (AS) of introns in response to infection is recurrently observed but poorly understood. Here we report that the potato (Solanum tuberosum) NLR gene RB undergoes AS of its intron, resulting in 2 transcriptional isoforms, which coordinately regulate plant immunity and growth homeostasis. During normal growth, RB predominantly exists as an intron-retained isoform RB_IR, encoding a truncated protein containing only the N-terminus of the NLR. Upon late blight infection, the pathogen induces intron splicing of RB, increasing the abundance of RB_CDS, which encodes a full-length and active R protein. By deploying the RB splicing isoforms fused with a luciferase reporter system, we identified IPI-O1 (also known as Avrblb1), the RB cognate effector, as a facilitator of RB AS. IPI-O1 directly interacts with potato splicing factor StCWC15, resulting in altered localization of StCWC15 from the nucleoplasm to the nucleolus and nuclear speckles. Mutations in IPI-O1 that eliminate StCWC15 binding also disrupt StCWC15 re-localization and RB intron splicing. Thus, our study reveals that StCWC15 serves as a surveillance facilitator that senses the pathogen-secreted effector and regulates the trade-off between RB-mediated plant immunity and growth, expanding our understanding of molecular plant-microbe interactions.
Collapse
Affiliation(s)
- Biying Sun
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Huang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Liang Kong
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuyun Gao
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Zhao
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayong Shen
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Wang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Kangping Li
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Luyao Wang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen Branch, Shenzhen, Guangdong 518120, China
| | - Yuanchao Wang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Dennis A Halterman
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
- US Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706-1514, USA
| | - Suomeng Dong
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Schmid LM, Manavski N, Chi W, Meurer J. Chloroplast Ribosome Biogenesis Factors. PLANT & CELL PHYSIOLOGY 2024; 65:516-536. [PMID: 37498958 DOI: 10.1093/pcp/pcad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
The formation of chloroplasts can be traced back to an ancient event in which a eukaryotic host cell containing mitochondria ingested a cyanobacterium. Since then, chloroplasts have retained many characteristics of their bacterial ancestor, including their transcription and translation machinery. In this review, recent research on the maturation of rRNA and ribosome assembly in chloroplasts is explored, along with their crucial role in plant survival and their implications for plant acclimation to changing environments. A comparison is made between the ribosome composition and auxiliary factors of ancient and modern chloroplasts, providing insights into the evolution of ribosome assembly factors. Although the chloroplast contains ancient proteins with conserved functions in ribosome assembly, newly evolved factors have also emerged to help plants acclimate to changes in their environment and internal signals. Overall, this review offers a comprehensive analysis of the molecular mechanisms underlying chloroplast ribosome assembly and highlights the importance of this process in plant survival, acclimation and adaptation.
Collapse
Affiliation(s)
- Lisa-Marie Schmid
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| |
Collapse
|
3
|
Song YC, Chen MX, Zhang KL, Reddy ASN, Cao FL, Zhu FY. QuantAS: a comprehensive pipeline to study alternative splicing by absolute quantification of splice isoforms. THE NEW PHYTOLOGIST 2023; 240:928-939. [PMID: 37596706 DOI: 10.1111/nph.19193] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/15/2023] [Indexed: 08/20/2023]
Affiliation(s)
- Yu-Chen Song
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Mo-Xian Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Kai-Lu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Fu-Liang Cao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
| | - Fu-Yuan Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
4
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
5
|
Kufel J, Diachenko N, Golisz A. Alternative splicing as a key player in the fine-tuning of the immunity response in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2022; 23:1226-1238. [PMID: 35567423 PMCID: PMC9276941 DOI: 10.1111/mpp.13228] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/01/2023]
Abstract
Plants, like animals, are constantly exposed to abiotic and biotic stresses, which often inhibit plant growth and development, and cause tissue damage, disease, and even plant death. Efficient and timely response to stress requires appropriate co- and posttranscriptional reprogramming of gene expression. Alternative pre-mRNA splicing provides an important layer of this regulation by controlling the level of factors involved in stress response and generating additional protein isoforms with specific features. Recent high-throughput studies have revealed that several defence genes undergo alternative splicing that is often affected by pathogen infection. Despite extensive work, the exact mechanisms underlying these relationships are still unclear, but the contribution of alternative protein isoforms to the defence response and the role of regulatory factors, including components of the splicing machinery, have been established. Modulation of gene expression in response to stress includes alternative splicing, chromatin remodelling, histone modifications, and nucleosome occupancy. How these processes affect plant immunity is mostly unknown, but these facets open new regulatory possibilities. Here we provide an overview of the current state of knowledge and recent findings regarding the growing importance of alternative splicing in plant response to biotic stress.
Collapse
Affiliation(s)
- Joanna Kufel
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Nataliia Diachenko
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Anna Golisz
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
6
|
Javaran VJ, Moffett P, Lemoyne P, Xu D, Adkar-Purushothama CR, Fall ML. Grapevine Virology in the Third-Generation Sequencing Era: From Virus Detection to Viral Epitranscriptomics. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112355. [PMID: 34834718 PMCID: PMC8623739 DOI: 10.3390/plants10112355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 05/30/2023]
Abstract
Among all economically important plant species in the world, grapevine (Vitis vinifera L.) is the most cultivated fruit plant. It has a significant impact on the economies of many countries through wine and fresh and dried fruit production. In recent years, the grape and wine industry has been facing outbreaks of known and emerging viral diseases across the world. Although high-throughput sequencing (HTS) has been used extensively in grapevine virology, the application and potential of third-generation sequencing have not been explored in understanding grapevine viruses and their impact on the grapevine. Nanopore sequencing, a third-generation technology, can be used for the direct sequencing of both RNA and DNA with minimal infrastructure. Compared to other HTS methods, the MinION nanopore platform is faster and more cost-effective and allows for long-read sequencing. Due to the size of the MinION device, it can be easily carried for field viral disease surveillance. This review article discusses grapevine viruses, the principle of third-generation sequencing platforms, and the application of nanopore sequencing technology in grapevine virus detection, virus-plant interactions, as well as the characterization of viral RNA modifications.
Collapse
Affiliation(s)
- Vahid Jalali Javaran
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Peter Moffett
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Pierre Lemoyne
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
| | - Dong Xu
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
| | - Charith Raj Adkar-Purushothama
- Département de Biochimie, Faculté de Médecine des Sciences de la Santé, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada;
| | - Mamadou Lamine Fall
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
| |
Collapse
|
7
|
Ganie SA, Reddy ASN. Stress-Induced Changes in Alternative Splicing Landscape in Rice: Functional Significance of Splice Isoforms in Stress Tolerance. BIOLOGY 2021; 10:309. [PMID: 33917813 PMCID: PMC8068108 DOI: 10.3390/biology10040309] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022]
Abstract
Improvements in yield and quality of rice are crucial for global food security. However, global rice production is substantially hindered by various biotic and abiotic stresses. Making further improvements in rice yield is a major challenge to the rice research community, which can be accomplished through developing abiotic stress-resilient rice varieties and engineering durable agrochemical-independent pathogen resistance in high-yielding elite rice varieties. This, in turn, needs increased understanding of the mechanisms by which stresses affect rice growth and development. Alternative splicing (AS), a post-transcriptional gene regulatory mechanism, allows rapid changes in the transcriptome and can generate novel regulatory mechanisms to confer plasticity to plant growth and development. Mounting evidence indicates that AS has a prominent role in regulating rice growth and development under stress conditions. Several regulatory and structural genes and splicing factors of rice undergo different types of stress-induced AS events, and the functional significance of some of them in stress tolerance has been defined. Both rice and its pathogens use this complex regulatory mechanism to devise strategies against each other. This review covers the current understanding and evidence for the involvement of AS in biotic and abiotic stress-responsive genes, and its relevance to rice growth and development. Furthermore, we discuss implications of AS for the virulence of different rice pathogens and highlight the areas of further research and potential future avenues to develop climate-smart and disease-resistant rice varieties.
Collapse
Affiliation(s)
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
8
|
Wang H, Liu S, Dai X, Yang Y, Luo Y, Gao Y, Liu X, Wei W, Wang H, Xu X, Reddy ASN, Jaiswal P, Li W, Liu B, Gu L. PSDX: A Comprehensive Multi-Omics Association Database of Populus trichocarpa With a Focus on the Secondary Growth in Response to Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:655565. [PMID: 34122478 PMCID: PMC8195342 DOI: 10.3389/fpls.2021.655565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 05/16/2023]
Abstract
Populus trichocarpa (P. trichocarpa) is a model tree for the investigation of wood formation. In recent years, researchers have generated a large number of high-throughput sequencing data in P. trichocarpa. However, no comprehensive database that provides multi-omics associations for the investigation of secondary growth in response to diverse stresses has been reported. Therefore, we developed a public repository that presents comprehensive measurements of gene expression and post-transcriptional regulation by integrating 144 RNA-Seq, 33 ChIP-seq, and six single-molecule real-time (SMRT) isoform sequencing (Iso-seq) libraries prepared from tissues subjected to different stresses. All the samples from different studies were analyzed to obtain gene expression, co-expression network, and differentially expressed genes (DEG) using unified parameters, which allowed comparison of results from different studies and treatments. In addition to gene expression, we also identified and deposited pre-processed data about alternative splicing (AS), alternative polyadenylation (APA) and alternative transcription initiation (ATI). The post-transcriptional regulation, differential expression, and co-expression network datasets were integrated into a new P. trichocarpa Stem Differentiating Xylem (PSDX) database (http://forestry.fafu.edu.cn/db/SDX), which further highlights gene families of RNA-binding proteins and stress-related genes. The PSDX also provides tools for data query, visualization, a genome browser, and the BLAST option for sequence-based query. Much of the data is also available for bulk download. The availability of PSDX contributes to the research related to the secondary growth in response to stresses in P. trichocarpa, which will provide new insights that can be useful for the improvement of stress tolerance in woody plants.
Collapse
Affiliation(s)
- Huiyuan Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiufang Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yongkang Yang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunjun Luo
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yubang Gao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuqing Liu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wentao Wei
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huihui Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xi Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Bo Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Bo Liu,
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Lianfeng Gu,
| |
Collapse
|