1
|
Ye F, Xia T, Zhao M, Zhao W, Min P, Wang Y, Wang Q, Zhang Y, Du J. PlexinA1 promotes gastric cancer migration through preventing MICAL1 protein ubiquitin/proteasome-mediated degradation in a Rac1-dependent manner. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167124. [PMID: 38508474 DOI: 10.1016/j.bbadis.2024.167124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Metastasis promotes the development of tumors and is a significant cause of gastric cancer death. For metastasis to proceed, tumor cells must become mobile by modulating their cytoskeleton. MICAL1 (Molecule Interacting with CasL1) is known as an actin cytoskeleton regulator, but the mechanisms by which it drives gastric cancer cell migration are still unclear. Analysis of gastric cancer tissues revealed that MICAL1 expression is dramatically upregulated in stomach adenocarcinoma (STAD) samples as compared to noncancerous stomach tissues. Patients with high MICAL1 expression had shorter overall survival (OS), post-progression survival (PPS) and first-progression survival (FPS) compared with patients with low MICAL1 expression. RNAi-mediated silencing of MICAL1 inhibited the expression of Vimentin, a protein involved in epithelial-mesenchymal transition. This effect correlates with a significant reduction in gastric cancer cell migration. MICAL1 overexpression reversed these preventive effects. Immunoprecipitation experiments and immunofluorescence assays revealed that PlexinA1 forms a complex with MICAL1. Importantly, specific inhibition of PlexinA1 blocked the Rac1 activation and ROS production, which, in turn, impaired MICAL1 protein stability by accelerating MICAL1 ubiquitin/proteasome-dependent degradation. Overexpression of PlexinA1 enhanced Rac1 activation, ROS production, MICAL1 and Vimentin expressions, and favored cell migration. In conclusion, this study identified MICAL1 as an important facilitator of gastric cancer cell migration, at least in part, by affecting Vimentin expression and PlexinA1 promotes gastric cancer cell migration by binding to and suppressing MICAL1 degradation in a Rac1/ROS-dependent manner.
Collapse
Affiliation(s)
- Fengwen Ye
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tianxiang Xia
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - MingYu Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Weizhen Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Pengxiang Min
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qianwen Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
2
|
Rajan S, Terman JR, Reisler E. MICAL-mediated oxidation of actin and its effects on cytoskeletal and cellular dynamics. Front Cell Dev Biol 2023; 11:1124202. [PMID: 36875759 PMCID: PMC9982024 DOI: 10.3389/fcell.2023.1124202] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Actin and its dynamic structural remodelings are involved in multiple cellular functions, including maintaining cell shape and integrity, cytokinesis, motility, navigation, and muscle contraction. Many actin-binding proteins regulate the cytoskeleton to facilitate these functions. Recently, actin's post-translational modifications (PTMs) and their importance to actin functions have gained increasing recognition. The MICAL family of proteins has emerged as important actin regulatory oxidation-reduction (Redox) enzymes, influencing actin's properties both in vitro and in vivo. MICALs specifically bind to actin filaments and selectively oxidize actin's methionine residues 44 and 47, which perturbs filaments' structure and leads to their disassembly. This review provides an overview of the MICALs and the impact of MICAL-mediated oxidation on actin's properties, including its assembly and disassembly, effects on other actin-binding proteins, and on cells and tissue systems.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jonathan R. Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Rouyère C, Serrano T, Frémont S, Echard A. Oxidation and reduction of actin: Origin, impact in vitro and functional consequences in vivo. Eur J Cell Biol 2022; 101:151249. [PMID: 35716426 DOI: 10.1016/j.ejcb.2022.151249] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Actin is among the most abundant proteins in eukaryotic cells and assembles into dynamic filamentous networks regulated by many actin binding proteins. The actin cytoskeleton must be finely tuned, both in space and time, to fulfill key cellular functions such as cell division, cell shape changes, phagocytosis and cell migration. While actin oxidation by reactive oxygen species (ROS) at non-physiological levels are known for long to impact on actin polymerization and on the cellular actin cytoskeleton, growing evidence shows that direct and reversible oxidation/reduction of specific actin amino acids plays an important and physiological role in regulating the actin cytoskeleton. In this review, we describe which actin amino acid residues can be selectively oxidized and reduced in many different ways (e.g. disulfide bond formation, glutathionylation, carbonylation, nitration, nitrosylation and other oxidations), the cellular enzymes at the origin of these post-translational modifications, and the impact of actin redox modifications both in vitro and in vivo. We show that the regulated balance of oxidation and reduction of key actin amino acid residues contributes to the control of actin filament polymerization and disassembly at the subcellular scale and highlight how improper redox modifications of actin can lead to pathological conditions.
Collapse
Affiliation(s)
- Clémentine Rouyère
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Thomas Serrano
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France
| | - Stéphane Frémont
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France.
| |
Collapse
|
4
|
Prifti E, Tsakiri EN, Vourkou E, Stamatakis G, Samiotaki M, Skoulakis EMC, Papanikolopoulou K. Mical modulates Tau toxicity via cysteine oxidation in vivo. Acta Neuropathol Commun 2022; 10:44. [PMID: 35379354 PMCID: PMC8981811 DOI: 10.1186/s40478-022-01348-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
Tau accumulation is clearly linked to pathogenesis in Alzheimer’s disease and other Tauopathies. However, processes leading to Tau fibrillization and reasons for its pathogenicity remain largely elusive. Mical emerged as a novel interacting protein of human Tau expressed in Drosophila brains. Mical is characterized by the presence of a flavoprotein monooxygenase domain that generates redox potential with which it can oxidize target proteins. In the well-established Drosophila Tauopathy model, we use genetic interactions to show that Mical alters Tau interactions with microtubules and the Actin cytoskeleton and greatly affects Tau aggregation propensity and Tau-associated toxicity and dysfunction. Exploration of the mechanism was pursued using a Mical inhibitor, a mutation in Mical that selectively disrupts its monooxygenase domain, Tau transgenes mutated at cysteine residues targeted by Mical and mass spectrometry analysis to quantify cysteine oxidation. The collective evidence strongly indicates that Mical’s redox activity mediates the effects on Tau via oxidation of Cys322. Importantly, we also validate results from the fly model in human Tauopathy samples by showing that MICAL1 is up-regulated in patient brains and co-localizes with Tau in Pick bodies. Our work provides mechanistic insights into the role of the Tau cysteine residues as redox-switches regulating the process of Tau self-assembly into inclusions in vivo, its function as a cytoskeletal protein and its effect on neuronal toxicity and dysfunction.
Collapse
|
5
|
Protein folding stabilities are a major determinant of oxidation rates for buried methionine residues. J Biol Chem 2022; 298:101872. [PMID: 35346688 PMCID: PMC9062257 DOI: 10.1016/j.jbc.2022.101872] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
The oxidation of protein-bound methionines to form methionine sulfoxides has a broad range of biological ramifications, making it important to delineate factors that influence methionine oxidation rates within a given protein. This is especially important for biopharmaceuticals, where oxidation can lead to deactivation and degradation. Previously, neighboring residue effects and solvent accessibility have been shown to impact the susceptibility of methionine residues to oxidation. In this study, we provide proteome-wide evidence that oxidation rates of buried methionine residues are also strongly influenced by the thermodynamic folding stability of proteins. We surveyed the Escherichia coli proteome using several proteomic methodologies and globally measured oxidation rates of methionine residues in the presence and absence of tertiary structure, as well as the folding stabilities of methionine-containing domains. These data indicated that buried methionines have a wide range of protection factors against oxidation that correlate strongly with folding stabilities. Consistent with this, we show that in comparison to E. coli, the proteome of the thermophile Thermus thermophilus is significantly more stable and thus more resistant to methionine oxidation. To demonstrate the utility of this correlation, we used native methionine oxidation rates to survey the folding stabilities of E. coli and T. thermophilus proteomes at various temperatures and propose a model that relates the temperature dependence of the folding stabilities of these two species to their optimal growth temperatures. Overall, these results indicate that oxidation rates of buried methionines from the native state of proteins can be used as a metric of folding stability.
Collapse
|
6
|
Qi C, Min P, Wang Q, Wang Y, Song Y, Zhang Y, Bibi M, Du J. MICAL2 Contributes to Gastric Cancer Cell Proliferation by Promoting YAP Dephosphorylation and Nuclear Translocation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9955717. [PMID: 34650666 PMCID: PMC8510804 DOI: 10.1155/2021/9955717] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/12/2021] [Accepted: 09/16/2021] [Indexed: 01/19/2023]
Abstract
Dynamic cytoskeletal rearrangements underlie the changes that occur during cell division in proliferating cells. MICAL2 has been reported to possess reactive oxygen species- (ROS-) generating properties and act as an important regulator of cytoskeletal dynamics. However, whether it plays a role in gastric cancer cell proliferation is not known. In the present study, we found that MICAL2 was highly expressed in gastric cancer tissues, and this high expression level was associated with carcinogenesis and poor overall survival in gastric cancer patients. The knockdown of MICAL2 led to cell cycle arrest in the S phase and attenuated cell proliferation. Concomitant with S-phase arrest, a decrease in CDK6 and cyclin D protein levels was observed. Furthermore, MICAL2 knockdown attenuated intracellular ROS generation, while MICAL2 overexpression led to a decrease in the p-YAP/YAP ratio and promoted YAP nuclear localization and cell proliferation, effects that were reversed by pretreatment with the ROS scavenger N-acetyl-L-cysteine (NAC) and SOD-mimetic drug tempol. We further found that MICAL2 induced Cdc42 activation, and activated Cdc42 mediated the effect of MICAL2 on YAP dephosphorylation and nuclear translocation. Collectively, our results showed that MICAL2 has a promotive effect on gastric cancer cell proliferation through ROS generation and Cdc42 activation, both of which independently contribute to YAP dephosphorylation and its nuclear translocation.
Collapse
Affiliation(s)
- Chenxiang Qi
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Pengxiang Min
- Key Laboratory of Cardio Vascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qianwen Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yueyuan Wang
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yixuan Song
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Maria Bibi
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
7
|
Shi F, He Y, Chen Y, Yin X, Sha X, Wang Y. Comparative Analysis of Multiple Neurodegenerative Diseases Based on Advanced Epigenetic Aging Brain. Front Genet 2021; 12:657636. [PMID: 34093653 PMCID: PMC8173158 DOI: 10.3389/fgene.2021.657636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/16/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Neurodegenerative Diseases (NDs) are age-dependent and include Alzheimer’s disease (AD), Parkinson’s disease (PD), progressive supranuclear palsy (PSP), frontotemporal dementia (FTD), and so on. There have been numerous studies showing that accelerated aging is closely related (even the driver of) ND, thus promoting imbalances in cellular homeostasis. However, the mechanisms of how different ND types are related/triggered by advanced aging are still unclear. Therefore, there is an urgent need to explore the potential markers/mechanisms of different ND types based on aging acceleration at a system level. Methods: AD, PD, PSP, FTD, and aging markers were identified by supervised machine learning methods. The aging acceleration differential networks were constructed based on the aging score. Both the enrichment analysis and sensitivity analysis were carried out to investigate both common and specific mechanisms among different ND types in the context of aging acceleration. Results: The extracellular fluid, cellular metabolisms, and inflammatory response were identified as the common driving factors of cellular homeostasis imbalances during the accelerated aging process. In addition, Ca ion imbalance, abnormal protein depositions, DNA damage, and cytoplasmic DNA in macrophages were also revealed to be special mechanisms that further promote AD, PD, PSP, and FTD, respectively. Conclusion: The accelerated epigenetic aging mechanisms of different ND types were integrated and compared through our computational pipeline.
Collapse
Affiliation(s)
- Feitong Shi
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Yudan He
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Yao Chen
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Xinman Yin
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China.,Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|