1
|
Maharjan R, Zhang Z, Klenotic PA, Gregor WD, Tringides ML, Cui M, Purdy GE, Yu EW. Structures of the mycobacterial MmpL4 and MmpL5 transporters provide insights into their role in siderophore export and iron acquisition. PLoS Biol 2024; 22:e3002874. [PMID: 39423221 PMCID: PMC11524445 DOI: 10.1371/journal.pbio.3002874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/30/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
The Mycobacterium tuberculosis (Mtb) pathogen, the causative agent of the airborne infection tuberculosis (TB), harbors a number of mycobacterial membrane protein large (MmpL) transporters. These membrane proteins can be separated into 2 distinct subclasses, where they perform important functional roles, and thus, are considered potential drug targets to combat TB. Previously, we reported both X-ray and cryo-EM structures of the MmpL3 transporter, providing high-resolution structural information for this subclass of the MmpL proteins. Currently, there is no structural information available for the subclass associated with MmpL4 and MmpL5, transporters that play a critical role in iron homeostasis of the bacterium. Here, we report cryo-EM structures of the M. smegmatis MmpL4 and MmpL5 transporters to resolutions of 2.95 Å and 3.00 Å, respectively. These structures allow us to propose a plausible pathway for siderophore translocation via these 2 transporters, an essential step for iron acquisition that enables the survival and replication of the mycobacterium.
Collapse
Affiliation(s)
- Rakesh Maharjan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - William D. Gregor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Marios L. Tringides
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, Massachusetts, United States of America
| | - Georgiana E. Purdy
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
2
|
Jing W, Zhang F, Shang Y, Shi W, Yao C, Zhang X, Chu N, Lu J, Yuan J. Deciphering the possible role of MmpL7 efflux pump in SQ109 resistance in Mycobacterium tuberculosis. Ann Clin Microbiol Antimicrob 2024; 23:87. [PMID: 39342331 PMCID: PMC11439249 DOI: 10.1186/s12941-024-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND SQ109 is a promising candidate drug for the treatment of patients with drug-resistant tuberculosis (DR-TB). The purpose of this study was to investigate the activity of SQ109 against clinical isolates of Mycobacterium tuberculosis (MTB) from patients with multidrug-resistant TB (MDR-TB) and pre-extensively drug-resistant TB (pre-XDR-TB), and to explore new drug-resistant mechanisms of SQ109. METHODS We evaluated the in vitro activity of SQ109 against clinical isolates from patients with MDR-TB and pre-XDR-TB using minimal inhibitory concentration (MIC) assay. The drug-resistant gene, mmpL3 of SQ109-resistant strains was sequenced, and a quantitative real-time PCR assay was used to analyze 28 efflux pump genes in SQ109-resistant strains without mmpL3 mutations. The role of candidate efflux pumps mmpL5 and mmpL7 on the MIC of SQ109 was evaluated using recombinantly cloned MmpL5 and MmpL7 expressed in Mycobacterium smegmatis. RESULTS The MIC90, MIC95 and MIC99 values of SQ109 for 225 clinical isolates of MTB were 0.25 mg/L, 0.5 mg/L and 1.0 mg/L, respectively. Among the pre-XDR strains, six showed resistance to SQ109 despite the absence of gene mutations in mmpL3. In six resistant pre-XDR strains, the MIC of SQ109 decreased with the use of an efflux pump inhibitor, and there was significant upregulation of mmpL5 and mmpL7 in two strains after exposure to SQ109. The presence of MmpL7 in Mycobacterium smegmatis resulted in decreased susceptibility to SQ109, with the MIC increasing from 16 mg/L to 32 mg/L. CONCLUSIONS Our data demonstrated that SQ109 exhibited excellent levels of in vitro activity against MTB. MmpL7 may be a potential gene for MTB resistance to SQ109, providing a useful target for detecting SQ109 resistance in MTB.
Collapse
Affiliation(s)
- Wei Jing
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Thoracic Tumor Research Institute, No. 9, Beiguan Street, Tongzhou District, Beijing, 101149, PR China
| | - Fuzhen Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, No. 9, Beiguan Street, Tongzhou District, Beijing, 101149, PR China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, No. 9, Beiguan Street, Tongzhou District, Beijing, 101149, PR China
| | - Wenhui Shi
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Thoracic Tumor Research Institute, No. 9, Beiguan Street, Tongzhou District, Beijing, 101149, PR China
| | - Cong Yao
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, No. 9, Beiguan Street, Tongzhou District, Beijing, 101149, PR China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, No. 9, Beiguan Street, Tongzhou District, Beijing, 101149, PR China
| | - Naihui Chu
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Thoracic Tumor Research Institute, No. 9, Beiguan Street, Tongzhou District, Beijing, 101149, PR China.
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 101149, PR China.
| | - Jinfeng Yuan
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, No. 9, Beiguan Street, Tongzhou District, Beijing, 101149, PR China.
| |
Collapse
|
3
|
Raghu MS, Yogesh Kumar K, Shamala T, Alharti FA, Prashanth MK, Jeon BH. Synthesis, antitubercular profile and molecular docking studies of quinazolinone-based pyridine derivatives against drug-resistant tuberculosis. J Biomol Struct Dyn 2024; 42:3307-3317. [PMID: 37261798 DOI: 10.1080/07391102.2023.2217928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023]
Abstract
The promising quinazolinone-based pyridine derivatives (4a-j) were synthesized and subsequently tested for their antimycobacterial activities against the various drug-sensitive and drug-resistant Mycobacterium tuberculosis (Mtb) strains to combat infectious diseases and address growing concerns about the devastating effects of tuberculosis (TB). Utilizing 1H NMR, 13C NMR, and mass spectra, the structural and molecular confirmation of the synthesized compounds were deciphered. With minimum inhibitory concentration (MIC) values ranging from 0.31 to 19.13 μM, the results showed that compounds 4e and 4f showed promise anti-TB action against both drug-sensitive and drug-resistant TB strains. To study the cytotoxicity of synthesized molecules, normal Vero and mouse macrophage (RAW264.7) cell lines were utilized. Remarkably, it was revealed that at the highest concentration tested, none of the newly synthesized molecules were toxic to the Vero cell line. The binding patterns of the potent compounds 4b, 4e and 4f in the active site of the mycobacterial membrane protein Large 3 (MmpL3) protein are also revealed by molecular docking studies, which has contributed to the development of a structural rationale for Mtb inhibition. The physicochemical characteristics of the compounds were then predicted using theoretical calculations. Overall, the molecular docking results, physiochemical properties, and observed antimycobacterial activity all point to compound 4e with trifluoromethyl and compound 4f with nitro moiety as potential quinazolinone linked pyridine-based MmpL3 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Bengaluru, India
| | - K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Ramanagara, India
| | - T Shamala
- Department of Chemistry, B N M Institute of Technology, Bengaluru, India
| | - Fahad A Alharti
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M K Prashanth
- Department of Chemistry, B N M Institute of Technology, Bengaluru, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Ge Y, Luo Q, Liu L, Shi Q, Zhang Z, Yue X, Tang L, Liang L, Hu J, Ouyang W. S288T mutation altering MmpL3 periplasmic domain channel and H-bond network: a novel dual drug resistance mechanism. J Mol Model 2024; 30:39. [PMID: 38224406 DOI: 10.1007/s00894-023-05814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
CONTEXT Mycobacterial membrane proteins Large 3 (MmpL3) is responsible for the transport of mycobacterial acids out of cell membrane to form cell wall, which is essential for the survival of Mycobacterium tuberculosis (Mtb) and has become a potent anti-tuberculosis target. SQ109 is an ethambutol (EMB) analogue, as a novel anti-tuberculosis drug, can effectively inhibit MmpL3, and has completed phase 2b-3 clinical trials. Drug resistance has always been the bottleneck problem in clinical treatment of tuberculosis. The S288T mutant of MmpL3 shows significant resistance to the inhibitor SQ109, while the specific action mechanism remains unclear. The results show that MmpL3 S288T mutation causes local conformational change with little effect on the global structure. With MmpL3 bound by SQ109 inhibitor, the distance between D710 and R715 increases resulting in H-bond destruction, but their interactions and proton transfer function are still restored. In addition, the rotation of Y44 in the S288T mutant leads to an obvious bend in the periplasmic domain channel and an increased number of contact residues, reducing substrate transport efficiency. This work not only provides a possible dual drug resistance mechanism of MmpL3 S288T mutant but also aids the development of novel anti-tuberculosis inhibitors. METHODS In this work, molecular dynamics (MD) and quantum mechanics (QM) simulations both were performed to compare inhibitor (i.e., SQ109) recognition, motion characteristics, and H-bond energy change of MmpL3 after S288T mutation. In addition, the WT_SQ109 complex structure was obtained by molecular docking program (Autodock 4.2); Molecular Mechanics/ Poisson Boltzmann Surface Area (MM-PBSA) and Solvated Interaction Energy (SIE) methods were used to calculate the binding free energies (∆Gbind); Geometric criteria were used to analyze the changes of hydrogen bond networks.
Collapse
Affiliation(s)
- Yutong Ge
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Qing Luo
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Ling Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Quanshan Shi
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Zhigang Zhang
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Xinru Yue
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Lingkai Tang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Weiwei Ouyang
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
5
|
Kumar G, Adhikrao PA. Targeting Mycobacterium tuberculosis iron-scavenging tools: a recent update on siderophores inhibitors. RSC Med Chem 2023; 14:1885-1913. [PMID: 37859726 PMCID: PMC10583813 DOI: 10.1039/d3md00201b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Among the various bacterial infections, tuberculosis (TB) remains a life-threatening infectious disease responsible as the most significant cause of mortality and morbidity worldwide. The co-infection of human immunodeficiency virus (HIV) in association with TB burdens the healthcare system substantially. Notably, M.tb possesses defence against most antitubercular antibiotic drugs, and the efficacy of existing frontline anti-TB drugs is waning. Also, new and recurring cases of TB from resistant bacteria such as multidrug-resistant TB (MDR), extensively drug-resistant TB (XDR), and totally drug-resistant TB (TDR) strains are increasing. Hence, TB begs the scientific community to explore the new therapeutic class of compounds with their novel mechanism. M.tb requires iron from host cells to sustain, grow, and carry out several biological processes. M.tb has developed strategic methods of acquiring iron from the surrounding environment. In this communication, we discuss an overview of M.tb iron-scavenging tools. Also, we have summarized recently identified MbtA and MbtI inhibitors, which prevent M.tb from scavenging iron. These iron-scavenging tool inhibitors have the potential to be developed as anti-TB agents/drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| | - Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| |
Collapse
|
6
|
Tilwani K, Patel A, Patel M, Sojitra P, Dave G. Asiaticoside A for the modulation of 1-TbAd- a potential target and ligand for extensive drug resistance Mycobacterium tuberculosis. AMB Express 2023; 13:111. [PMID: 37833557 PMCID: PMC10575824 DOI: 10.1186/s13568-023-01616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
In nature, terpene nucleosides are relatively rare, with 1-tuberculosinyladenosine (1-TbAd) being an exclusive feature of Mycobacterium tuberculosis (Mtb). The convergence of nucleosides and terpene pathways in the Mtb complex appears to have emerged late in its evolutionary history. 1-TbAd (PDB ID: 3WQK) is a prominent chemical marker for Mtb and may contribute to its virulence-related properties when exported extracellularly. We gathered a comprehensive set of 270 phytochemicals from diverse Ayurvedic texts and treatment traditions. Subsequently, we conducted structure-based molecular docking analyses to identify compounds exhibiting the strongest binding affinity for 1-TbAd, highlighting their potential as drug candidates. These selected compounds were further subjected to an in-vitro growth inhibition assay against the reference strain Mycobacterium tuberculosis h37rv. Among the candidates, Asiaticoside A (ASA) emerged as a promising candidate from the pool of 270 compounds. To assess the impact of ASA on 1-TbAd expression, we employed a PCR-based mRNA expression assay, revealing ASA's ability to downregulate 1-TbAd expression in extensively drug-resistant MTb strains. Remarkably, the conventional drug rifampin showed no such effectiveness in our experiments. We further conducted molecular dynamic simulations to explore the interaction between ASA and 1-TbAd in a cellular-like environment, confirming the stability of their interaction. Also, we predicted ASA's stability toward causing inducing the random mutations in the target gene. With this, we propose a novel target and its modulator to treat extensively drug-resistant MTB.
Collapse
Affiliation(s)
- Komal Tilwani
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421, India
| | - Abhishek Patel
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421, India
| | - Mainavi Patel
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421, India
| | - Pankaj Sojitra
- QxP Pharma project and GMP services Private Ltd, Ahmedabad, India
| | - Gayatri Dave
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421, India.
| |
Collapse
|
7
|
Zhang L, Rao Z. Structural biology and inhibition of the Mtb cell wall glycoconjugates biosynthesis on the membrane. Curr Opin Struct Biol 2023; 82:102670. [PMID: 37542906 DOI: 10.1016/j.sbi.2023.102670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Glycoconjugates are the dominant components of the Mycobacterium tuberculosis cell wall. These glycoconjugates are essential for the viability of Mtb and attribute to drug resistance and virulence during infection. The assembly and maturation of the cell wall largely relies on the Mtb plasma membrane. A significant number of membrane-bound glycosyltransferases (GTs) and transporters play pivotal roles in forming the complex glycoconjugates and are targeted by the first-line anti-TB drug and potent drug candidates. Here we summarize the latest structural biology of mycobacterial GTs and transporters, and describe the modes of action of drug and drug candidates that are of substantial clinical value in anti-TB chemotherapeutics.
Collapse
Affiliation(s)
- Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Zihe Rao
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Li Y, Acharya A, Yang L, Liu J, Tajkhorshid E, Zgurskaya HI, Jackson M, Gumbart JC. Insights into substrate transport and water permeation in the mycobacterial transporter MmpL3. Biophys J 2023; 122:2342-2352. [PMID: 36926696 PMCID: PMC10257117 DOI: 10.1016/j.bpj.2023.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/04/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Mycobacteria, such as Mycobacterium tuberculosis, are characterized by a uniquely thick and waxy cell envelope that consists of two membranes, with a variety of mycolates comprising their outer membrane (OM). The protein Mycobacterial membrane protein Large 3 (MmpL3) is responsible for the transport of a primary OM component, trehalose monomycolate (TMM), from the inner (cytoplasmic) membrane (IM) to the periplasmic space, a process driven by the proton gradient. Although multiple structures of MmpL3 with bound substrates have been solved, the exact pathway(s) for TMM or proton transport remains elusive. Here, employing molecular dynamics simulations we investigate putative pathways for either transport species. We hypothesized that MmpL3 will cycle through similar conformational states as the related transporter AcrB, which we used as targets for modeling the conformation of MmpL3. A continuous water pathway through the transmembrane region was found in one of these states, illustrating a putative pathway for protons. Additional equilibrium simulations revealed that TMM can diffuse from the membrane into a binding pocket in MmpL3 spontaneously. We also found that acetylation of TMM, which is required for transport, makes it more stable within MmpL3's periplasmic cavity compared with the unacetylated form.
Collapse
Affiliation(s)
- Yupeng Li
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry (MB&B), Yale University, New Haven, Connecticut
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
9
|
Kapp E, Calitz H, Streicher EM, Dippenaar A, Egieyeh S, Jordaan A, Warner DF, Joubert J, Malan SF, Sampson SL. Discovery and biological evaluation of an adamantyl-amide derivative with likely MmpL3 inhibitory activity. Tuberculosis (Edinb) 2023; 141:102350. [PMID: 37244249 DOI: 10.1016/j.tube.2023.102350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/29/2023]
Abstract
A series of molecules containing bulky lipophilic scaffolds was screened for activity against Mycobacterium tuberculosis and a number of compounds with antimycobacterial activity were identified. The most active compound, (2E)-N-(adamantan-1-yl)-3-phenylprop-2-enamide (C1), has a low micromolar minimum inhibitory concentration, low cytotoxicity (therapeutic index = 32.26), low mutation frequency and is active against intracellular Mycobacterium tuberculosis. Whole genome sequencing of mutants resistant to C1 showed a mutation in mmpL3 which may point to the involvement of MmpL3 in the antimycobacterial activity of the compound. In silico mutagenesis and molecular modelling studies were performed to better understand the binding of C1 within MmpL3 and the role that the specific mutation may play in the interaction at protein level. These analyses revealed that the mutation increases the energy required for binding of C1 within the protein translocation channel of MmpL3. The mutation also decreases the solvation energy of the protein, suggesting that the mutant protein might be more solvent-accessible, thereby restricting its interaction with other molecules. The results reported here describe a new molecule that may interact with the MmpL3 protein, providing insights into the effect of mutations on protein-ligand interactions and enhancing our understanding of this essential protein as a priority drug target.
Collapse
Affiliation(s)
- Erika Kapp
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa; University of the Western Cape, Private Bag x17, Bellville, 7535, South Africa.
| | - Hanri Calitz
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research/South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa.
| | - Elizabeth M Streicher
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research/South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa.
| | - Anzaan Dippenaar
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research/South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa; Global Health Institute, Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Gouverneur Kinsbergencentrum, Doornstraat 331, 2610, Wilrijk, Belgium.
| | - Samuel Egieyeh
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa; University of the Western Cape, Private Bag x17, Bellville, 7535, South Africa.
| | - Audrey Jordaan
- Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa.
| | - Digby F Warner
- Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa.
| | - Jacques Joubert
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa; University of the Western Cape, Private Bag x17, Bellville, 7535, South Africa.
| | - Sarel F Malan
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa; University of the Western Cape, Private Bag x17, Bellville, 7535, South Africa.
| | - Samantha L Sampson
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research/South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa.
| |
Collapse
|
10
|
Alzain AA, Makki AA, Ibraheem W. Insights into the Inhibition of Mycolic Acid Synthesis by Cytosporone E Derivatives for Tuberculosis Treatment Via an In Silico Multi-target Approach. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Computational design of MmpL3 inhibitors for tuberculosis therapy. Mol Divers 2023; 27:357-369. [PMID: 35477825 DOI: 10.1007/s11030-022-10436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
Tuberculosis is a chronic communicable disease caused by Mycobacterium tuberculosis (Mtb) and spreads from lungs to lymphatic system. The cell wall of mycobacterium plays a prominent role in maintaining the virulence and pathogenicity and also acts as prime target for drug discovery. Hence, this study has put into emphasis with target MmpLs (Mycobacterial membrane proteins Large) which are significant for the growth and survival of Mycobacterium tuberculosis. MmpLs belongs to the resistance, nodulation and division (RND) protein superfamily. MmpL3 is the only MmpL deemed essential for the replication and viability of mycobacterial cells. For the study, we have selected SQ109 derivatives as Mmpl3 inhibitor, which holds non-covalent property. Structure-based pharmacophore model of MmpL3 target protein with SQ109 as co-crystallized ligand (PDB: 6AJG) was generated to screen the ligand database. Compounds with decent fitness score and pharmacophoric features were compared with standard drug and taken for molecular docking studies. Further prime molecular mechanics-Poisson-Boltzmann surface area (MM-GBSA) and induced fit calculations identified potential molecules for further drug-likeness screening. Overall computational calculations identified ZINC000000016638 and ZINC000000003594 as potential in silico MmpL3 inhibitors. Molecular dynamics simulations integrated with MM-PBSA free energy calculations identified that MmpL3-ZINC000000016638 complex was more stable. Study can be further extended for synthesis and biological evaluation, derivatization of active compound to identify potential and safe lead compounds for effective tuberculosis therapy.
Collapse
|
12
|
Imran M, Arora MK, Chaudhary A, Khan SA, Kamal M, Alshammari MM, Alharbi RM, Althomali NA, Alzimam IM, Alshammari AA, Alharbi BH, Alshengeti A, Alsaleh AA, Alqahtani SA, Rabaan AA. MmpL3 Inhibition as a Promising Approach to Develop Novel Therapies against Tuberculosis: A Spotlight on SQ109, Clinical Studies, and Patents Literature. Biomedicines 2022; 10:2793. [PMID: 36359313 PMCID: PMC9687596 DOI: 10.3390/biomedicines10112793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/13/2023] Open
Abstract
Tuberculosis (TB) is accountable for considerable global morbidity and mortality. Effective TB therapy with multiple drugs completes in about six months. The longer duration of TB therapy challenges patient compliance and contributes to treatment collapse and drug resistance (DR) progress. Therefore, new medications with an innovative mechanism of action are desperately required to shorten the TB therapy's duration and effective TB control. The mycobacterial membrane protein Large 3 (MmpL3) is a novel, mycobacteria-conserved and recognized promiscuous drug target used in the development of better treatments for multi-drug resistance TB (MDR-TB) and extensively drug-resistant TB (XDR-TB). This article spotlights MmpL3, the clinical studies of its inhibitor (SQ109), and the patent literature. The literature on MmpL3 inhibitors was searched on PubMed and freely available patent databases (Espacenet, USPTO, and PatentScope). SQ109, an analog of ethambutol (EMB), is an established MmpL3 inhibitor and has completed Phase 2b-3 clinical trials. Infectex and Sequella are developing orally active SQ109 in partnership to treat MDR pulmonary TB. SQ109 has demonstrated activity against drug-sensitive (DS) and drug-resistant (DR) Mycobacterium tuberculosis (Mtb) and a synergistic effect with isoniazid (INH), rifampicin (RIF), clofazimine (CFZ), and bedaquiline (BNQ). The combination of SQ109, clofazimine, bedaquiline, and pyrazinamide (PZA) has been patented due to its excellent anti-TB activity against MDR-TB, XDR-TB, and latent-TB. The combinations of SQ109 with other anti-TB drugs (chloroquine, hydroxychloroquine, and sutezolid) have also been claimed in the patent literature. SQ109 is more potent than EMB and could substitute EMB in the intensive stage of TB treatment with the three- or four-drug combination. Developing MmpL3 inhibitors is a promising approach to fighting the challenges associated with DS-TB and DR-TB. The authors foresee MmpL3 inhibitors such as SQ109 as future drugs for TB treatment.
Collapse
Affiliation(s)
- Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mandeep Kumar Arora
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, India
| | - Anurag Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut 250005, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, Muscat 130, Oman
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal Mutlaq Alshammari
- Pharmacy Department, Hotat Bani Tamim General Hospital, Hotat Bani Tamim 16631, Saudi Arabia
| | | | | | | | | | | | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | | | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| |
Collapse
|
13
|
A Hydrazine-Hydrazone Adamantine Compound Shows Antimycobacterial Activity and Is a Probable Inhibitor of MmpL3. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207130. [PMID: 36296721 PMCID: PMC9610904 DOI: 10.3390/molecules27207130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Tuberculosis remains an important cause of morbidity and mortality throughout the world. Notably, an important number of multi drug resistant cases is an increasing concern. This problem points to an urgent need for novel compounds with antimycobacterial properties and to improve existing therapies. Whole-cell-based screening for compounds with activity against Mycobacterium tuberculosis complex strains in the presence of linezolid was performed in this study. A set of 15 bioactive compounds with antimycobacterial activity in vitro were identified with a minimal inhibitory concentration of less than 2 µg/mL. Among them, compound 1 is a small molecule with a chemical structure consisting of an adamantane moiety and a hydrazide–hydrazone moiety. Whole genome sequencing of spontaneous mutants resistant to the compounds suggested compound 1 to be a new inhibitor of MmpL3. This compound binds to the same pocket as other already published MmpL3 inhibitors, without disturbing the proton motive force of M. bovis BCG and M. smegmatis. Compound 1 showed a strong activity against a panel ofclinical strains of M. tuberculosis in vitro. This compound showed no toxicity against mammalian cells and protected Galleria mellonella larvae against M. bovis BCG infection. These results suggest that compound 1 is a promising anti-TB agent with the potential to improve TB treatment in combination with standard TB therapies.
Collapse
|
14
|
Novel chemical entities inhibiting Mycobacterium tuberculosis growth identified by phenotypic high-throughput screening. Sci Rep 2022; 12:14879. [PMID: 36050506 PMCID: PMC9435431 DOI: 10.1038/s41598-022-19192-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
We performed a high-throughput phenotypic whole cell screen of Mycobacterium tuberculosis against a diverse chemical library of approximately 100,000 compounds from the AbbVie corporate collection and identified 24 chemotypes with anti-tubercular activity. We selected two series for further exploration and conducted structure-activity relationship studies with new analogs for the 4-phenyl piperidines (4PP) and phenylcyclobutane carboxamides (PCB). Strains with mutations in MmpL3 demonstrated resistance to both compound series. We isolated resistant mutants for the two series and found mutations in MmpL3. These data suggest that MmpL3 is the target, or mechanism of resistance for both series.
Collapse
|
15
|
Kwofie SK, Hanson G, Sasu H, Enninful KS, Mensah FA, Nortey RT, Yeboah OP, Agoni C, Wilson MD. Molecular Modelling and Atomistic Insights into the Binding Mechanism of MmpL3 Mtb. Chem Biodivers 2022; 19:e202200160. [PMID: 35969844 DOI: 10.1002/cbdv.202200160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/15/2022] [Indexed: 11/05/2022]
Abstract
Mycobacterial membrane proteins Large (MmpLs), which belong to the resistance, nodulation, and division (RND) protein superfamily, play critical roles in transporting polymers, lipids, and immunomodulators. MmpLs have become one of the important therapeutic drug targets to emerge in recent times. In this study, two homology modelling techniques, Modeller and SWISS-MODEL, were used in modelling the three-dimensional protein structure of the MmpL3 of Mycobacterium tuberculosis using that of M. smegmatis as template. MmpL3 inhibitors, namely BM212, NITD304, SPIRO, and NITD349, in addition to the co-crystalized ligands AU1235, ICA38, SQ109 and rimonabant, were screened against the modelled structure and the Mmpl3 of M. smegmatis using molecular docking techniques. Protein-ligand interactions were analysed using molecular dynamics simulations and Molecular Mechanics Poisson-Boltzmann surface area computations. Novel residues Gln32, Leu165, Ile414, and Phe35 were identified as critical for binding to M. tuberculosis MmpL3, and conformational dynamics upon inhibitor binding were discussed.
Collapse
Affiliation(s)
- Samuel Kojo Kwofie
- University of Ghana, Biomedical Engineering, Department Of Biomedical Engineering, University Of Ghana, Legon, Pmb LG77, Legon, PMB LG77, Accra, GHANA
| | - George Hanson
- University of Ghana, Biomedical Engineering, Department Of Biomedical Engineering, University O, PMB LG77, Accra, GHANA
| | - Henrietta Sasu
- University of Ghana, Biomedical Engineering, Department Of Biomedical Engineering, University Of Ghana, Legon, Pmb LG77, Legon, PMB LG77, Accra, GHANA
| | - Kweku S Enninful
- University of Ghana, Parasitology, Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMI, LG 581, Accra, GHANA
| | - Francis A Mensah
- University of Ghana, Biomedical Engineering, Department of Biomedical Engineering, University Of Ghana, L, PMB LG77, Accra, GHANA
| | - Richmond T Nortey
- University of Ghana, Biomedical Engineering, Department of Biomedical Engineering, University Of Ghana, L, PMB LG77, Accra, GHANA
| | - Omane P Yeboah
- University of Ghana, Biomedical Engineering, Department of Biomedical Engineering, University Of Ghana, L, PMB LG77, Accra, GHANA
| | - Clement Agoni
- University College Dublin, Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin 4, Dublin, IRELAND
| | - Michael D Wilson
- University of Ghana, Parasitology, Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMI, LG 581, Accra, GHANA
| |
Collapse
|
16
|
Khan MT, Khan TA, Ahmad I, Muhammad S, Wei DQ. Diversity and novel mutations in membrane transporters of Mycobacterium tuberculosis. Brief Funct Genomics 2022; 22:168-179. [PMID: 35868449 DOI: 10.1093/bfgp/elac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), encodes a family of membrane proteins belonging to Resistance-Nodulation-Cell Division (RND) permeases also called multidrug resistance pumps. Mycobacterial membrane protein Large (MmpL) transporters represent a subclass of RND transporters known to participate in exporting of lipid components across the cell envelope. These proteins perform an essential role in MTB survival; however, there are no data regarding mutations in MmpL, polyketide synthase (PKS) and acyl-CoA dehydrogenase FadE proteins from Khyber Pakhtunkhwa, Pakistan. This study aimed to screen mutations in transmembrane transporter proteins including MmpL, PKS and Fad through whole-genome sequencing (WGS) in local isolates of Khyber Pakhtunkhwa province, Pakistan. Fourteen samples were collected from TB patients and drug susceptibility testing was performed. However, only three samples were completely sequenced. Moreover, 209 whole-genome sequences of the same geography were also retrieved from NCBI GenBank to analyze the diversity of mutations in MmpL, PKS and Fad proteins. Among the 212 WGS (Accession ID: PRJNA629298, PRJNA629388, and ERR2510337-ERR2510345, ERR2510546-ERR2510645), numerous mutations in Fad (n = 756), PKS (n = 479), and MmpL (n = 306) have been detected. Some novel mutations were also detected in MmpL, PKS and acyl-CoA dehydrogenase Fad. Novel mutations including Asn576Ser in MmpL8, Val943Gly in MmpL9 and Asn145Asp have been detected in MmpL3. The presence of a large number of mutations in the MTB membrane may have functional consequences on proteins. However, further experimental studies are needed to elucidate the variants' effect on MmpL, PKS and FadE functions.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Pakistan
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Phase V, Hayatabad, Peshawar, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Irshad Ahmad
- Department of Molecular Biology and Genetics. Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.,Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, P.R. China
| |
Collapse
|
17
|
Bajad NG, Singh SK, Singh SK, Singh TD, Singh M. Indole: A promising scaffold for the discovery and development of potential anti-tubercular agents. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100119. [PMID: 35992375 PMCID: PMC9389259 DOI: 10.1016/j.crphar.2022.100119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/13/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022] Open
Abstract
Indole-containing small molecules have been reported to have diverse pharmacological activities. The aromatic heterocyclic scaffold, which resembles various protein structures, has received attention from organic and medicinal chemists. Exploration of indole derivatives in drug discovery has rapidly yielded a vast array of biologically active compounds with broad therapeutic potential. Nature is the major source of indole scaffolds, but various classical and advanced synthesis methods for indoles have also been reported. One-pot synthesis is widely considered an efficient approach in synthetic organic chemistry and has been used to synthesize some indole compounds. The rapid emergence of drug-resistant tuberculosis is a major challenge to be addressed. Identifying novel targets and drug candidates for tuberculosis is therefore crucial. Researchers have extensively explored indole derivatives as potential anti-tubercular agents or drugs. Indole scaffolds containing the novel non-covalent (decaprenylphosphoryl-β-D-ribose2'-epimerase) DprE1 inhibitor 1,4-azaindole is currently in clinical trials to treat Mycobacterium tuberculosis. In addition, DG167 indazole sulfonamide with potent anti-tubercular activity is undergoing early-stage development in preclinical studies. Indole bearing cationic amphiphiles with high chemical diversity have been reported to depolarize and disrupt the mycobacterial membrane. Some indole-based compounds have potential inhibitory activities against distinct anti-tubercular targets, including the inhibition of cell wall synthesis, replication, transcription, and translation, as summarized in the graphical abstract. The success of computer-aided drug design in the fields of cancer and anti-viral drugs has accelerated in silico studies in antibacterial drug development. This review describes the sources of indole scaffolds, the potential for novel indole derivatives to serve as anti-tubercular agents, in silico findings, and proposed actions to facilitate the design of novel compounds with anti-tubercular activity.
Collapse
Affiliation(s)
- Nilesh Gajanan Bajad
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Tryambak Deo Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
18
|
Ray R, Das S, Lobo M, Birangal SR, Shenoy GG. A holistic molecular modelling approach to design novel indole-2-carboxamide derivatives as potential inhibitors of MmpL3. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:551-581. [PMID: 35850557 DOI: 10.1080/1062936x.2022.2096691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Tuberculosis is an infectious air-borne disease and one of the leading causes of death globally among all infectious diseases. There is an urgent need to develop antitubercular drugs that would be highly efficient and less toxic than the presently available marketed drugs. Mycobacterium membrane protein large 3 (MmpL3) is an emerging drug target in tuberculosis with various classes of molecules that have been known to inhibit it. In this study, a dataset of indole-2-carboxamides showing antitubercular activity by inhibiting MmpL3 was utilized. Initially, a chimera-based homology model was developed and docking was performed with the filtered dataset to analyse the interactions. Thereafter, molecular dynamics simulations were run with representative molecules to gain a better insight on the binding patterns. To attain a more quantitative correlation, an atom-based 3D QSAR model was developed which complemented the results from the previous models. A library of novel indole-2-carboxamides was then generated using core hopping-based ligand enumeration and upon screening on our workflow model it predicted three molecules as potent antitubercular compounds. This work not only helps to gain new insights on the interactions at the MmpL3 binding site but also provides novel indole-2-carboxamides having the potential to become antitubercular drugs in future.
Collapse
Affiliation(s)
- R Ray
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - M Lobo
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S R Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - G G Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
19
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
20
|
Modak B, Girkar S, Narayan R, Kapoor S. Mycobacterial Membranes as Actionable Targets for Lipid-Centric Therapy in Tuberculosis. J Med Chem 2022; 65:3046-3065. [PMID: 35133820 DOI: 10.1021/acs.jmedchem.1c01870] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infectious diseases remain significant health concerns worldwide, and resistance is particularly common in patients with tuberculosis caused by Mycobacterium tuberculosis. The development of anti-infectives with novel modes of action may help overcome resistance. In this regard, membrane-active agents, which modulate membrane components essential for the survival of pathogens, present attractive antimicrobial agents. Key advantages of membrane-active compounds include their ability to target slow-growing or dormant bacteria and their favorable pharmacokinetics. Here, we comprehensively review recent advances in the development of membrane-active chemotypes that target mycobacterial membranes and discuss clinically relevant membrane-active antibacterial agents that have shown promise in counteracting bacterial infections. We discuss the relationship between the membrane properties and the synthetic requirements within the chemical scaffold, as well as the limitations of current membrane-active chemotypes. This review will lay the chemical groundwork for the development of membrane-active antituberculosis agents and will foster the discovery of more effective antitubercular agents.
Collapse
Affiliation(s)
- Biswabrata Modak
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Siddhali Girkar
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Goa 403110, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Goa 403110, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
21
|
Moorey AR, Cabanillas A, Batt SM, Ghidelli-Disse S, Urones B, Sanz O, Lelievre J, Bantscheff M, Cox LR, Besra GS. The multi-target aspect of an MmpL3 inhibitor: The BM212 series of compounds bind EthR2, a transcriptional regulator of ethionamide activation. Cell Surf 2021; 7:100068. [PMID: 34888432 PMCID: PMC8634040 DOI: 10.1016/j.tcsw.2021.100068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) ensures that drug discovery efforts remain at the forefront of TB research. There are multiple different experimental approaches that can be employed in the discovery of anti-TB agents. Notably, inhibitors of MmpL3 are numerous and structurally diverse in Mtb and have been discovered through the generation of spontaneous resistant mutants and subsequent whole genome sequencing studies. However, this approach is not always reliable and can lead to incorrect target assignment and requires orthogonal confirmatory approaches. In fact, many of these inhibitors have also been shown to act as multi-target agents, with secondary targets in Mtb, as well as in other non-MmpL3-containing pathogens. Herein, we have investigated further the cellular targets of the MmpL3-inhibitor BM212 and a number of BM212 analogues. To determine the alternative targets of BM212, which may have been masked by MmpL3 mutations, we have applied a combination of chemo-proteomic profiling using bead-immobilised BM212 derivatives and protein extracts, along with whole-cell and biochemical assays. The study identified EthR2 (Rv0078) as a protein that binds BM212 analogues. We further demonstrated binding of BM212 to EthR2 through an in vitro tryptophan fluorescence assay, which showed significant quenching of tryptophan fluorescence upon addition of BM212. Our studies have demonstrated the value of revisiting drugs with ambiguous targets, such as MmpL3, in an attempt to find alternative targets and the study of off-target effects to understand more precisely target engagement of new hits emerging from drug screening campaigns.
Collapse
Affiliation(s)
- Alice R Moorey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Alejandro Cabanillas
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Sarah M Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | | | - Beatriz Urones
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Olalla Sanz
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Joel Lelievre
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Marcus Bantscheff
- Cellzome - a GSK Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
22
|
Identification of anti-mycobacterial agents against mmpL3: Virtual screening, ADMET analysis and MD simulations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Mycobacteriophages as Genomic Engineers and Anti-infective Weapons. mBio 2021; 12:mBio.00632-21. [PMID: 34006655 PMCID: PMC8262953 DOI: 10.1128/mbio.00632-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus (Mab) is an emerging pathogen that is highly tolerant to current antibiotic therapies, and the current standard of care has a high failure rate. Mycobacteriophages represent a promising alternative treatment that have the potential to kill Mab with few side effects. However, the repertoire of phages that infect Mab is limited, and little is understood about the determinants of phage susceptibility in mycobacteria. Two studies from the Hatfull group (R. M. Dedrick, B. E. Smith, R. A. Garlena, D. A. Russell, et al., mBio 12:e03431-20, 2021, https://doi.org/10.1128/mBio.03431-20, and R. M. Dedrick, H. G. Aull, D. Jacobs-Sera, R. A. Garlena, et al., mBio 12:e03441-20, 2021, https://doi.org/10.1128/mBio.03441-20) shed new light on the natural phage complement of Mab and provide some of the first insights into what factors might drive susceptibility to these phages. These studies not only lay the groundwork for therapeutic development of more effective phage therapy in Mab but also provide a foothold for studying how mobile elements such as phages and plasmids impact Mab biology and evolution.
Collapse
|
24
|
Agasid MT, Robinson CV. Probing membrane protein-lipid interactions. Curr Opin Struct Biol 2021; 69:78-85. [PMID: 33930613 DOI: 10.1016/j.sbi.2021.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 12/15/2022]
Abstract
Structure determination of membrane proteins has highlighted the many roles played by lipids in influencing overall protein architecture. It is now widely accepted that lipids surrounding membrane proteins play crucial roles by modulating their conformational, structural, and functional properties. Capturing often transient lipid interactions and defining their chemical identity, however, remains challenging. Recent advances in mass spectrometry have resolved questions concerning lipid interactions by providing the molecular composition of intact complexes in association with lipids. Together with other biophysical tools, a picture is emerging of the dynamic nature of lipid-mediated interactions and their effects on conformation, interactions, and signaling.
Collapse
Affiliation(s)
- Mark T Agasid
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|