1
|
Vergalli J, Réfrégiers M, Ruggerone P, Winterhalter M, Pagès JM. Advances in methods and concepts provide new insight into antibiotic fluxes across the bacterial membrane. Commun Biol 2024; 7:1508. [PMID: 39543341 PMCID: PMC11564671 DOI: 10.1038/s42003-024-07168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
The sophisticated envelope of Gram-negative bacteria modulates the uptake of small molecules in a side-chain-sensitive manner. Despite intensive theoretical and experimental investigations, a general set of pathways underpinning antibiotic uptake has not been identified. This manuscript discusses the passive influx versus active efflux of antibiotics, considering the responsible membrane proteins and the transported molecules. Recent methods have analyzed drug transport across the bacterial membrane in order to understand their activity. The combination of in vitro, in cellulo and in silico methods shed light on the key, mainly electrostatic, interactions between the molecule surface, porins and transporters during permeation. A key factor is the relationship between the dose of an active compound near its target and its antibacterial activity during the critical early window. Today, methodology breakthroughs provide fruitful tools to precisely dissect drug transport, identify key steps in drug resistance associated with membrane impermeability and efflux, and highlight key parameters to generate more effective drugs.
Collapse
Affiliation(s)
| | | | - Paolo Ruggerone
- Department of Physics, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Constructor University, 28719, Bremen, Germany
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | |
Collapse
|
2
|
Xie ST, Zhu D, Song YQ, Zhu YG, Ding LJ. Unveiling potential roles of earthworms in mitigating the presence of virulence factor genes in terrestrial ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135133. [PMID: 38986408 DOI: 10.1016/j.jhazmat.2024.135133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Earthworms can redistribute soil microbiota, and thus might affect the profile of virulence factor genes (VFGs) which are carried by pathogens in soils. Nevertheless, the knowledge of VFG profile in the earthworm guts and its interaction with earthworm gut microbiome is still lacking. Herein, we characterized earthworm gut and soil microbiome and VFG profiles in natural and agricultural ecosystems at a national scale using metagenomics. VFG profiles in the earthworm guts significantly differed from those in the surrounding soils, which was mainly driven by variations of bacterial communities. Furthermore, the total abundance of different types of VFGs in the earthworm guts was about 20-fold lower than that in the soils due to the dramatic decline (also by approximately 20-fold) of VFG-carrying bacterial pathogens in the earthworm guts. Additionally, five VFGs related to nutritional/metabolic factors and stress survival were identified as keystones merely in the microbe-VFG network in the earthworm guts, implying their pivotal roles in facilitating pathogen colonization in earthworm gut microhabitats. These findings suggest the potential roles of earthworms in reducing risks related to the presence of VFGs in soils, providing novel insights into earthworm-based bioremediation of VFG contamination in terrestrial ecosystems.
Collapse
Affiliation(s)
- Shu-Ting Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Zhu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Ya-Qiong Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101400, China; Sino-Danish Centre for Education and Research, Beijing 100049, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Jimei District, Xiamen 361021, China
| | - Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
4
|
Man L, Soh PXY, McEnearney TE, Cain JA, Dale AL, Cordwell SJ. Multi-Omics of Campylobacter jejuni Growth in Chicken Exudate Reveals Molecular Remodelling Associated with Altered Virulence and Survival Phenotypes. Microorganisms 2024; 12:860. [PMID: 38792690 PMCID: PMC11123243 DOI: 10.3390/microorganisms12050860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Campylobacter jejuni is the leading cause of foodborne human gastroenteritis in the developed world. Infections are largely acquired from poultry produced for human consumption and poor food handling is thus a major risk factor. Chicken exudate (CE) is a liquid produced from defrosted commercial chicken products that facilitates C. jejuni growth. We examined the response of C. jejuni to growth in CE using a multi-omics approach. Changes in the C. jejuni proteome were assessed by label-based liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We quantified 1328 and 1304 proteins, respectively, in experiments comparing 5% CE in Mueller-Hinton (MH) medium and 100% CE with MH-only controls. These proteins represent 81.8% and 80.3% of the predicted C. jejuni NCTC11168 proteome. Growth in CE induced profound remodelling of the proteome. These changes were typically conserved between 5% and 100% CE, with a greater magnitude of change observed in 100% CE. We confirmed that CE induced C. jejuni biofilm formation, as well as increasing motility and resistance against oxidative stress, consistent with changes to proteins representing those functions. Assessment of the C. jejuni metabolome showed CE also led to increased intracellular abundances of serine, proline, and lactate that were correlated with the elevated abundances of their respective transporters. Analysis of carbon source uptake showed prolonged culture supernatant retention of proline and succinate in CE-supplemented medium. Metabolomics data provided preliminary evidence for the uptake of chicken-meat-associated dipeptides. C. jejuni exposed to CE showed increased resistance to several antibiotics, including polymyxin B, consistent with changes to tripartite efflux system proteins and those involved in the synthesis of lipid A. The C. jejuni CE proteome was also characterised by very large increases in proteins associated with iron acquisition, while a decrease in proteins containing iron-sulphur clusters was also observed. Our data suggest CE is both oxygen- and iron-limiting and provide evidence of factors required for phenotypic remodelling to enable C. jejuni survival on poultry products.
Collapse
Affiliation(s)
- Lok Man
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pamela X. Y. Soh
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tess E. McEnearney
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joel A. Cain
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ashleigh L. Dale
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stuart J. Cordwell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Huang Y, Swarge BN, Roseboom W, Bleeker JD, Brul S, Setlow P, Kramer G. Integrative Metabolomics and Proteomics Allow the Global Intracellular Characterization of Bacillus subtilis Cells and Spores. J Proteome Res 2024; 23:596-608. [PMID: 38190553 PMCID: PMC10845140 DOI: 10.1021/acs.jproteome.3c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
Reliable and comprehensive multi-omics analysis is essential for researchers to understand and explore complex biological systems more completely. Bacillus subtilis (B. subtilis) is a model organism for Gram-positive spore-forming bacteria, and in-depth insight into the physiology and molecular basis of spore formation and germination in this organism requires advanced multilayer molecular data sets generated from the same sample. In this study, we evaluated two monophasic methods for polar and nonpolar compound extraction (acetonitrile/methanol/water; isopropanol/water, and 60% ethanol) and two biphasic methods (chloroform/methanol/water, and methyl tert-butyl ether/methanol/water) on coefficients of variation of analytes, identified metabolite composition, and the quality of proteomics profiles. The 60% EtOH protocol proved to be the easiest in sample processing and was more amenable to automation. Collectively, we annotated 505 and 484 metabolites and identified 1665 and 1562 proteins in B. subtilis vegetative cells and spores, respectively. We also show differences between vegetative cells and spores from a multi-omics perspective and demonstrate that an integrative multi-omics analysis can be implemented from one sample using the 60% EtOH protocol. The results obtained by the 60% EtOH protocol provide comprehensive insight into differences in the metabolic and protein makeup of B. subtilis vegetative cells and spores.
Collapse
Affiliation(s)
- Yixuan Huang
- Laboratory
for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life
Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Molecular
Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bhagyashree N. Swarge
- Laboratory
for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life
Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Molecular
Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Winfried Roseboom
- Laboratory
for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life
Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jurre D. Bleeker
- Laboratory
for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life
Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular
Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Peter Setlow
- Department
of Molecular Biology and Biophysics, UConn
Health, Farmington, Connecticut 06030-3305, United States
| | - Gertjan Kramer
- Laboratory
for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life
Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|