1
|
Brimmer S, Ji P, Birla RK, Heinle JS, Grande-Allen JK, Keswani SG. Development of Novel 3D Spheroids for Discrete Subaortic Stenosis. Cardiovasc Eng Technol 2024; 15:704-715. [PMID: 39495395 DOI: 10.1007/s13239-024-00746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/07/2024] [Indexed: 11/05/2024]
Abstract
In this study, we propose a new method for bioprinting 3D Spheroids to study complex congenital heart disease known as discrete subaortic stenosis (DSS). The bioprinter allows us to manipulate the extrusion pressure to change the size of the spheroids, and the alginate porosity increases in size over time. The spheroids are composed of human umbilical vein endothelial cells (HUVECs), and we demonstrated that pressure and time during the bioprinting process can modulate the diameter of the spheroids. In addition, we used Pluronic acid to maintain the shape and position of the spheroids. Characterization of HUVECs in the spheroids confirmed their uniform distribution and we demonstrated cell viability as a function of time. Compared to traditional 2D cell cultures, the 3D spheroids model provides more relevant physiological environments, making it valuable for drug testing and therapeutic applications.
Collapse
Affiliation(s)
- Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Pengfei Ji
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Ravi K Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Jeffrey S Heinle
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | | | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA.
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA.
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA.
- Feigin Center C.450.06, Texas Children's Hospital, 1102 Bates Ave, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Miao X, Wu X, You W, He K, Chen C, Pathak JL, Zhang Q. Tailoring of apoptotic bodies for diagnostic and therapeutic applications:advances, challenges, and prospects. J Transl Med 2024; 22:810. [PMID: 39218900 PMCID: PMC11367938 DOI: 10.1186/s12967-024-05451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Apoptotic bodies (ABs) are extracellular vesicles released during apoptosis and possess diverse biological activities. Initially, ABs were regarded as garbage bags with the main function of apoptotic cell clearance. Recent research has found that ABs carry and deliver various biological agents and are taken by surrounding and distant cells, affecting cell functions and behavior. ABs-mediated intercellular communications are involved in various physiological processes including anti-inflammation and tissue regeneration as well as the pathogenesis of a variety of diseases including cancer, cardiovascular diseases, neurodegeneration, and inflammatory diseases. ABs in biological fluids can be used as a window of altered cellular and tissue states which can be applied in the diagnosis and prognosis of various diseases. The structural and constituent versatility of ABs provides flexibility for tailoring ABs according to disease diagnostic and therapeutic needs. An in-depth understanding of ABs' constituents and biological functions is mandatory for the effective tailoring of ABs including modification of bio membrane and cargo constituents. ABs' tailoring approaches including physical, chemical, biological, and genetic have been proposed for bench-to-bed translation in disease diagnosis, prognosis, and therapy. This review summarizes the updates on ABs tailoring approaches, discusses the existing challenges, and speculates the prospects for effective diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Miao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xiaojin Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Wenran You
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Kaini He
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Changzhong Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Janak Lal Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
| | - Qing Zhang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Song T, Kong B, Liu R, Luo Y, Wang Y, Zhao Y. Bioengineering Approaches for the Pancreatic Tumor Organoids Research and Application. Adv Healthc Mater 2024; 13:e2300984. [PMID: 37694339 DOI: 10.1002/adhm.202300984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Pancreatic cancer is a highly lethal form of digestive malignancy that poses significant health risks to individuals worldwide. Chemotherapy-based comprehensive treatment is the primary therapeutic approach for midlife and late-life patients. Nevertheless, the heterogeneity of the tumor and individual genetic backgrounds result in substantial variations in drug sensitivity among patients, rendering a single treatment regimen unsuitable for all patients. Conventional pancreatic cancer tumor organoid models are capable of emulating the biological traits of pancreatic cancer and are utilized in drug development and screening. However, these tumor organoids can still not mimic the tumor microenvironment (TME) in vivo, and the poor controllability in the preparation process hinders translation from essential drug screening to clinical pharmacological therapy. In recent years, many engineering methods with remarkable results have been used to develop pancreatic cancer organoid models, including bio-hydrogel, co-culture, microfluidic, and gene editing. Here, this work summarizes and analyzes the recent developments in engineering pancreatic tumor organoid models. In addition, the future direction of improving engineered pancreatic cancer organoids is discussed for their application prospects in clinical treatment.
Collapse
Affiliation(s)
- Taiyu Song
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Bin Kong
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Rui Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
4
|
Weng Y, Yang G, Li Y, Xu L, Chen X, Song H, Zhao CX. Alginate-based materials for enzyme encapsulation. Adv Colloid Interface Sci 2023; 318:102957. [PMID: 37392664 DOI: 10.1016/j.cis.2023.102957] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Enzymes are widely used in industry due to their high efficiency and selectivity. However, their low stability during certain industrial processes can result in a significant loss of catalytic activity. Encapsulation is a promising technique that can stabilize enzymes by protecting them from environmental stresses such as extreme temperature and pH, mechanical force, organic solvents, and proteases. Alginate and alginate-based materials have emerged as effective carriers for enzyme encapsulation due to their biocompatibility, biodegradability, and ability to form gel beads through ionic gelation. This review presents various alginate-based encapsulation systems for enzyme stabilization and explores their applications in different industries. We discuss the preparation methods of alginate encapsulated enzymes and analyze the release mechanisms of enzymes from alginate materials. Additionally, we summarize the characterization techniques used for enzyme-alginate composites. This review provides insights into the use of alginate encapsulation as a means of stabilizing enzymes and highlights the potential benefits for various industrial applications.
Collapse
Affiliation(s)
- Yilun Weng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangze Yang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Letao Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
5
|
Hu Y, Zhang H, Wang S, Cao L, Zhou F, Jing Y, Su J. Bone/cartilage organoid on-chip: Construction strategy and application. Bioact Mater 2023; 25:29-41. [PMID: 37056252 PMCID: PMC10087111 DOI: 10.1016/j.bioactmat.2023.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The necessity of disease models for bone/cartilage related disorders is well-recognized, but the barrier between ex-vivo cell culture, animal models and the real human body has been pending for decades. The organoid-on-a-chip technique showed opportunity to revolutionize basic research and drug screening for diseases like osteoporosis and arthritis. The bone/cartilage organoid on-chip (BCoC) system is a novel platform of multi-tissue which faithfully emulate the essential elements, biologic functions and pathophysiological response under real circumstances. In this review, we propose the concept of BCoC platform, summarize the basic modules and current efforts to orchestrate them on a single microfluidic system. Current disease models, unsolved problems and future challenging are also discussed, the aim should be a deeper understanding of diseases, and ultimate realization of generic ex-vivo tools for further therapeutic strategies of pathological conditions.
Collapse
|
6
|
Yang H, Jiang L, Guo K, Xiang N. Static droplet array for the synthesis of nonspherical microparticles. Electrophoresis 2023; 44:563-572. [PMID: 36593724 DOI: 10.1002/elps.202200271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
We reported a manually operated static droplet array (SDA)-based device for the synthesis of nonspherical microparticles with different shapes. The improved SDA structure and reversible bonding between poly(dimethylsiloxane) (PDMS) were used in the device for the large-scale synthesis and rapid extraction of nonspherical microparticles. To understand the device physics, the effects of flow rate, SDA well size, and shape on droplet generation performances were explored. The results indicated that droplet generation in SDA structures was insensitive to the flow rate, and monodisperse droplets were generated by the SDA-based device through manually pushing the syringe. Finally, we integrated four kinds of SDA structures in one device and successfully realized the synthesis and extraction of nonspherical microparticles with different shapes and materials. Our SDA-based device offers numerous advantages, such as simple manual operation, low equipment cost, controllable microparticle shapes and sizes, and large-scale production. Thus, it holds the potential to be used as a flexible tool for the production of nonspherical microparticles.
Collapse
Affiliation(s)
- Hang Yang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Lin Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Kefan Guo
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
7
|
Chao X, Zhao F, Hu J, Yu Y, Xie R, Zhong J, Huang M, Zeng T, Yang H, Luo D, Peng W. Comparative Study of Two Common In Vitro Models for the Pancreatic Islet with MIN6. Tissue Eng Regen Med 2023; 20:127-141. [PMID: 36592326 PMCID: PMC9852380 DOI: 10.1007/s13770-022-00507-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Islet transplantation is currently considered the most promising method for treating insulin-dependent diabetes. The two most-studied artificial islets are alginate-encapsulated β cells or β cell spheroids. As three-dimensional (3D) models, both artificial islets have better insulin secretory functions and transplantation efficiencies than cells in two-dimensional (2D) monolayer culture. However, the effects of these two methods have not been compared yet. Therefore, in this study, cells from the mouse islet β cell line Min6 were constructed as scaffold-free spheroids or alginate-encapsulated dispersed cells. METHODS MIN6 cell spheroids were prepared by using Agarose-base microwell arrays. The insulin secretion level was determined by mouse insulin ELISA kit, and the gene and protein expression status of the MIN6 were performed by Quantitative polymerase chain reaction and immunoblot, respectively. RESULTS Both 3D cultures effectively promoted the proliferation and glucose-stimulated insulin release (GSIS) of MIN6 cells compared to 2D adherent cells. Furthermore, 1% alginate-encapsulated MIN6 cells demonstrated more significant effects than the spheroids. In general, three pancreatic genes were expressed at higher levels in response to the 3D culture than to the 2D culture, and pancreatic/duodenal homeobox-1 (PDX1) expression was higher in the cells encapsulated in 1% alginate than that in the spheroids. A western blot analysis showed that 1% alginate-encapsulated MIN6 cells activated the phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (AKT)/forkhead transcription factor FKHR (FoxO1) pathway more than the spheroids, 0.5% alginate-, or 2% alginate-encapsulated cells did. The 3D MIN6 culture, therefore, showed improved effects compared to the 2D culture, and the 1% alginate-encapsulated MIN6 cells exhibited better effects than the spheroids. The upregulation of PDX1 expression through the activation of the PI3K/AKT/FoxO1 pathway may mediate the improved cell proliferation and GSIS in 1% alginate-encapsulated MIN6 cells. CONCLUSION This study may contribute to the construction of in vitro culture systems for pancreatic islets to meet clinical requirements.
Collapse
Affiliation(s)
- Xinxin Chao
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- The Affiliated Hospital of Jining Medical University, Shandong, China
| | - Furong Zhao
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong, China
| | - Jiawei Hu
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yanrong Yu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Renjian Xie
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Miao Huang
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Tai Zeng
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Hui Yang
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.
| | - Dan Luo
- Department of Physiology, School of Basic Medicine, Nanchang University, Nanchang, China.
| | - Weijie Peng
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China.
| |
Collapse
|
8
|
Sharifisistani M, Khanmohammadi M, Badali E, Ghasemi P, Hassanzadeh S, Bahiraie N, Lotfibakhshaiesh N, Ai J. Hyaluronic acid/gelatin microcapsule functionalized with carbon nanotube through laccase-catalyzed crosslinking for fabrication of cardiac microtissue. J Biomed Mater Res A 2022; 110:1866-1880. [PMID: 35765200 DOI: 10.1002/jbm.a.37419] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/24/2022] [Accepted: 06/11/2022] [Indexed: 11/08/2022]
Abstract
Carbon nanotube (CNT) and gelatin (Gela) molecules are effective substrates in promoting engineered cardiac tissue functions. This study developed a microfluidic-based encapsulation process for biomimetic hydrogel microcapsule fabrication. The hydrogel microcapsule was produced through a coaxial double orifice microfluidic technique and a water-in-oil emulsion system in two sequential processes. The phenol (Ph) substituted Gela (Gela-Ph) and CNT (CNT-Ph), respectively as cell-adhesive and electrically conductive substrates were incorporated in hyaluronic acid (HA)-based hydrogel through laccase-mediated crosslinking. The Cardiomyocyte-enclosing microcapsule fabricated and cellular survival, function, and possible difference in the biological activity of encapsulated cells within micro vehicles were investigated. The coaxial microfluidic method and Lac-mediated crosslinking reaction resulted in spherical vehicle production in 183 μm diameter at 500 capsules/min speed. The encapsulation process did not affect cellular viability and harvested cells from microcapsule proliferated well likewise subcultured cells in tissue culture plate. The biophysical properties of the designed hydrogel, including mechanical strength, swelling, biodegradability and electroconductivity upregulated significantly for hydrogels decorated covalently with Gela-Ph and CNT-Ph. The tendency of the microcapsule for the spheroid formation of cardiomyocytes inside the proposed microcapsule occurred 3 days after encapsulation. Interestingly, immobilized Gela-Ph and CNT-Ph promote cellular growth and specific cardiac markers. Overall, the microfluidic-based encapsulation technology and synthesized biomimetic substrates with electroconductive properties demonstrate desirable cellular adhesion, proliferation, and cardiac functions for engineering cardiac tissue.
Collapse
Affiliation(s)
- Maryam Sharifisistani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, The Five Senses Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Elham Badali
- Skull Base Research Center, The Five Senses Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Chemistry Department, Kharazmi University, Tehran, Iran
| | - Pouya Ghasemi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan, Iran
| | - Sajad Hassanzadeh
- Skull Base Research Center, The Five Senses Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Nafiseh Bahiraie
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Liu H, Chen B, Zhu Q. Potential application of hydrogel to the diagnosis and treatment of multiple sclerosis. J Biol Eng 2022; 16:10. [PMID: 35395765 PMCID: PMC8991948 DOI: 10.1186/s13036-022-00288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/12/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system. This disorder may cause progressive and permanent impairment, placing significant physical and psychological strain on sufferers. Each progress in MS therapy marks a significant advancement in neurological research. Hydrogels can serve as a scaffold with high water content, high expansibility, and biocompatibility to improve MS cell proliferation in vitro and therapeutic drug delivery to cells in vivo. Hydrogels may also be utilized as biosensors to detect MS-related proteins. Recent research has employed hydrogels as an adjuvant imaging agent in immunohistochemistry assays. Following an overview of the development and use of hydrogels in MS diagnostic and therapy, this review discussed hydrogel’s advantages and future opportunities in the diagnosis and treatment of MS. Graphical abstract ![]()
Collapse
Affiliation(s)
- Haochuan Liu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Xiantai Street No. 126, Changchun, TX, 130031, PR China
| | - Bing Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Xiantai Street No. 126, Changchun, TX, 130031, PR China.
| | - Qingsan Zhu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Xiantai Street No. 126, Changchun, TX, 130031, PR China.
| |
Collapse
|
10
|
Tang R, Yang L, Shen L, Ma X, Gao Y, Liu Y, Bai Z, Wang X. Controlled Fabrication of Bioactive Microtubes for Screening Anti-Tongue Squamous Cell Migration Drugs. Front Chem 2022; 10:771027. [PMID: 35127636 PMCID: PMC8813861 DOI: 10.3389/fchem.2022.771027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
The treatment of tongue squamous cell carcinoma (TSCC) faces challenges because TSCC has an aggressive biological behavior and manifests usually as widespread metastatic disease. Therefore, it is particularly important to screen out and develop drugs that inhibit tumor invasion and metastasis. Two-dimensional (2D) cell culture has been used as in vitro models to study cellular biological behavior, but growing evidence now shows that the 2D systems can result in cell bioactivities that deviate appreciably the in vivo response. It is urgent to develop a novel 3D cell migration model in vitro to simulate the tumor microenvironment as much as possible and screen out effective anti-migration drugs. Sodium alginate, has a widely used cell encapsulation material, as significant advantages. We have designed a microfluidic device to fabricate a hollow alginate hydrogel microtube model. Based on the difference in liquid flow rate, TSCC cells (Cal27) were able to be evenly distributed in the hollow microtubes, which was confirmed though fluorescence microscope and laser scanning confocal microscope (LSCM). Our microfluidic device was cheap, and commercially available and could be assembled in a modular way, which are composed of a coaxial needle, silicone hose, and syringes. It was proved that the cells grow well in artificial microtubes with extracellular matrix (ECM) proteins by LSCM and flow cytometry. Periodic motility conferred a different motor state to the cells in the microtubes, more closely resembling the environment in vivo. The quantitative analysis of tumor cell migration could be achieved simply by determining the position of the cell in the microtube cross-section. We verified the anti-migration effects of three NSAIDs drugs (aspirin, indomethacin, and nimesulide) with artificial microtubes, obtaining the same results as conventional migration experiments. The results showed that among the three NSAIDs, nimesulide showed great anti-migration potential against TSCC cells. Our method holds great potential for application in the more efficient screening of anti-migration tumor drugs.
Collapse
|
11
|
Alginate Hydrogel Microtubes for Salivary Gland Cell Organization and Cavitation. Bioengineering (Basel) 2022; 9:bioengineering9010038. [PMID: 35049747 PMCID: PMC8773299 DOI: 10.3390/bioengineering9010038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Understanding the different regulatory functions of epithelial and mesenchymal cell types in salivary gland development and cellular organization is essential for proper organoid formation and salivary gland tissue regeneration. Here, we demonstrate a biocompatible platform using pre-formed alginate hydrogel microtubes to facilitate direct epithelial–mesenchymal cell interaction for 3D salivary gland cell organization, which allows for monitoring cellular organization while providing a protective barrier from cell-cluster loss during medium changes. Using mouse salivary gland ductal epithelial SIMS cells as the epithelial model cell type and NIH 3T3 fibroblasts or primary E16 salivary mesenchyme cells as the stromal model cell types, self-organization from epithelial–mesenchymal interaction was examined. We observed that epithelial and mesenchymal cells undergo aggregation on day 1, cavitation by day 4, and generation of an EpCAM-expressing epithelial cell layer as early as day 7 of the co-culture in hydrogel microtubes, demonstrating the utility of hydrogel microtubes to facilitate heterotypic cell–cell interactions to form cavitated organoids. Thus, pre-formed alginate microtubes are a promising co-culture method for further understanding epithelial and mesenchymal interaction during tissue morphogenesis and for future practical applications in regenerative medicine.
Collapse
|