1
|
de Moura A, Karschau J. Mathematical model for the distribution of DNA replication origins. Phys Rev E 2024; 110:034408. [PMID: 39425392 DOI: 10.1103/physreve.110.034408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/03/2024] [Indexed: 10/21/2024]
Abstract
DNA replication in yeast and in many other organisms starts from well-defined locations on the DNA known as replication origins. The spatial distribution of these origins in the genome is particularly important in ensuring that replication is completed quickly. Cells are more vulnerable to DNA damage and other forms of stress while they are replicating their genome. This raises the possibility that the spatial distribution of origins is under selection pressure. In this paper we investigate the hypothesis that natural selection favors origin distributions leading to shorter replication times. Using a simple mathematical model, we show that this hypothesis leads to two main predictions about the origin distributions: that neighboring origins that are inefficient (less likely to fire) are more likely to be close to each other than efficient origins; and that neighboring origins with larger differences in firing times are more likely to be close to each other than origins with similar firing times. We test these predictions using next-generation sequencing data, and show that they are both supported by the data.
Collapse
|
2
|
Hu R, Fan W, Li S, Zhang G, Zang L, Qin L, Li R, Chen R, Zhang L, Gu W, Zhang Y, Rajagopalan S, Sun Q, Liu C. PM 2.5-induced cellular senescence drives brown adipose tissue impairment in middle-aged mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116423. [PMID: 38705039 DOI: 10.1016/j.ecoenv.2024.116423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Airborne fine particulate matter (PM2.5) exposure is closely associated with metabolic disturbance, in which brown adipose tissue (BAT) is one of the main contributing organs. However, knowledge of the phenotype and mechanism of PM2.5 exposure-impaired BAT is quite limited. In the study, male C57BL/6 mice at three different life phases (young, adult, and middle-aged) were simultaneously exposed to concentrated ambient PM2.5 or filtered air for 8 weeks using a whole-body inhalational exposure system. H&E staining and high-resolution respirometry were used to assess the size of adipocytes and mitochondrial function. Transcriptomics was performed to determine the differentially expressed genes in BAT. Quantitative RT-PCR, immunohistochemistry staining, and immunoblots were performed to verify the transcriptomics and explore the mechanism for BAT mitochondrial dysfunction. Firstly, PM2.5 exposure caused altered BAT morphology and mitochondrial dysfunction in middle-aged but not young or adult mice. Furthermore, PM2.5 exposure increased cellular senescence in BAT of middle-aged mice, accompanied by cell cycle arrest, impaired DNA replication, and inhibited AKT signaling pathway. Moreover, PM2.5 exposure disrupted apoptosis and autophagy homeostasis in BAT of middle-aged mice. Therefore, BAT in middle-aged mice was more vulnerable to PM2.5 exposure, and the cellular senescence-initiated apoptosis, autophagy, and mitochondrial dysfunction may be the mechanism of PM2.5 exposure-induced BAT impairment.
Collapse
Affiliation(s)
- Renjie Hu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Wenjun Fan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sanduo Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoqing Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Lu Zang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Li Qin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Yunhui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200433, China
| | - Sanjay Rajagopalan
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China.
| |
Collapse
|
3
|
Pontifex CS, Zaman M, Fanganiello RD, Shutt TE, Pfeffer G. Valosin-Containing Protein (VCP): A Review of Its Diverse Molecular Functions and Clinical Phenotypes. Int J Mol Sci 2024; 25:5633. [PMID: 38891822 PMCID: PMC11172259 DOI: 10.3390/ijms25115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
In this review we examine the functionally diverse ATPase associated with various cellular activities (AAA-ATPase), valosin-containing protein (VCP/p97), its molecular functions, the mutational landscape of VCP and the phenotypic manifestation of VCP disease. VCP is crucial to a multitude of cellular functions including protein quality control, endoplasmic reticulum-associated degradation (ERAD), autophagy, mitophagy, lysophagy, stress granule formation and clearance, DNA replication and mitosis, DNA damage response including nucleotide excision repair, ATM- and ATR-mediated damage response, homologous repair and non-homologous end joining. VCP variants cause multisystem proteinopathy, and pathology can arise in several tissue types such as skeletal muscle, bone, brain, motor neurons, sensory neurons and possibly cardiac muscle, with the disease course being challenging to predict.
Collapse
Affiliation(s)
- Carly S. Pontifex
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.S.P.); (M.Z.); (T.E.S.)
| | - Mashiat Zaman
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.S.P.); (M.Z.); (T.E.S.)
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Timothy E. Shutt
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.S.P.); (M.Z.); (T.E.S.)
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.S.P.); (M.Z.); (T.E.S.)
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Heritage Medical Research Building 155, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
4
|
Adiji OA, McConnell BS, Parker MW. The origin recognition complex requires chromatin tethering by a hypervariable intrinsically disordered region that is functionally conserved from sponge to man. Nucleic Acids Res 2024; 52:4344-4360. [PMID: 38381902 PMCID: PMC11077064 DOI: 10.1093/nar/gkae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
The first step toward eukaryotic genome duplication is loading of the replicative helicase onto chromatin. This 'licensing' step initiates with the recruitment of the origin recognition complex (ORC) to chromatin, which is thought to occur via ORC's ATP-dependent DNA binding and encirclement activity. However, we have previously shown that ATP binding is dispensable for the chromatin recruitment of fly ORC, raising the question of how metazoan ORC binds chromosomes. We show here that the intrinsically disordered region (IDR) of fly Orc1 is both necessary and sufficient for recruitment of ORC to chromosomes in vivo and demonstrate that this is regulated by IDR phosphorylation. Consistently, we find that the IDR confers the ORC holocomplex with ATP-independent DNA binding activity in vitro. Using phylogenetic analysis, we make the surprising observation that metazoan Orc1 IDRs have diverged so markedly that they are unrecognizable as orthologs and yet we find that these compositionally homologous sequences are functionally conserved. Altogether, these data suggest that chromatin is recalcitrant to ORC's ATP-dependent DNA binding activity, necessitating IDR-dependent chromatin tethering, which we propose poises ORC to opportunistically encircle nucleosome-free regions as they become available.
Collapse
Affiliation(s)
- Olubu A Adiji
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Brendan S McConnell
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Matthew W Parker
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
5
|
Oram MK, Baxley RM, Simon EM, Lin K, Chang YC, Wang L, Myers CL, Bielinsky AK. RNF4 prevents genomic instability caused by chronic DNA under-replication. DNA Repair (Amst) 2024; 135:103646. [PMID: 38340377 PMCID: PMC10948022 DOI: 10.1016/j.dnarep.2024.103646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Eukaryotic genome stability is maintained by a complex and diverse set of molecular processes. One class of enzymes that promotes proper DNA repair, replication and cell cycle progression comprises small ubiquitin-like modifier (SUMO)-targeted E3 ligases, or STUbLs. Previously, we reported a role for the budding yeast STUbL synthetically lethal with sgs1 (Slx) 5/8 in preventing G2/M-phase arrest in a minichromosome maintenance protein 10 (Mcm10)-deficient model of replication stress. Here, we extend these studies to human cells, examining the requirement for the human STUbL RING finger protein 4 (RNF4) in MCM10 mutant cancer cells. We find that MCM10 and RNF4 independently promote origin firing but regulate DNA synthesis epistatically and, unlike in yeast, the negative genetic interaction between RNF4 and MCM10 causes cells to accumulate in G1-phase. When MCM10 is deficient, RNF4 prevents excessive DNA under-replication at hard-to-replicate regions that results in large DNA copy number alterations and severely reduced viability. Overall, our findings highlight that STUbLs participate in species-specific mechanisms to maintain genome stability, and that human RNF4 is required for origin activation in the presence of chronic replication stress.
Collapse
Affiliation(s)
- Marissa K Oram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily M Simon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Lin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ya-Chu Chang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chad L Myers
- Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Romero-Zerbo SY, Valverde N, Claros S, Zamorano-Gonzalez P, Boraldi F, Lofaro FD, Lara E, Pavia J, Garcia-Fernandez M, Gago B, Martin-Montañez E. New molecular mechanisms to explain the neuroprotective effects of insulin-like growth factor II in a cellular model of Parkinson's disease. J Adv Res 2024:S2090-1232(24)00049-3. [PMID: 38341032 DOI: 10.1016/j.jare.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION One of the hallmarks of Parkinsońs Disease (PD) is oxidative distress, leading to mitochondrial dysfunction and neurodegeneration. Insulin-like growth factor II (IGF-II) has been proven to have antioxidant and neuroprotective effects in some neurodegenerative diseases, including PD. Consequently, there isgrowing interest in understanding the different mechanisms involved in the neuroprotective effect of this hormone. OBJECTIVES To clarify the mechanism of action of IGF-II involved in the protective effect of this hormone. METHODS The present study was carried out on a cellular model PD based on the incubation of dopaminergic cells (SN4741) in a culture with the toxic 1-methyl-4-phenylpyridinium (MPP+), in the presence of IGF-II. This model undertakes proteomic analyses in order to understand which molecular cell pathways might be involved in the neuroprotective effect of IGF-II. The most important proteins found in the proteomic study were tested by Western blot, colorimetric enzymatic activity assay and immunocytochemistry. Along with the proteomic study, mitochondrial morphology and function were also studied by transmission electron microscopy and oxygen consumption rate. The cell cycle was also analysed using 7AAd/BrdU staining, and flow cytometry. RESULTS The results obtained indicate that MPP+, MPP++IGF-II treatment and IGF-II, when compared to control, modified the expression of 197, 246 proteins and 207 respectively. Some of these proteins were found to be involved in mitochondrial structure and function, and cell cycle regulation. Including IGF-II in the incubation medium prevents the cell damage induced by MPP+, recovering mitochondrial function and cell cycle dysregulation, and thereby decreasing apoptosis. CONCLUSION IGF-II improves mitochondrial dynamics by promoting the association of Mitofilin with mitochondria, regaining function and redox homeostasis. It also rebalances the cell cycle, reducing the amount of apoptosis and cell death by the regulation of transcription factors, such as Checkpoint kinase 1.
Collapse
Affiliation(s)
- Silvana-Yanina Romero-Zerbo
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Nadia Valverde
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Silvia Claros
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Pablo Zamorano-Gonzalez
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Federica Boraldi
- Dipartimento di Scienze Della Vita. Patologia Generale, Universita di Modena e Reggio Emilia 4112, Italy
| | - Francesco-Demetrio Lofaro
- Dipartimento di Scienze Della Vita. Patologia Generale, Universita di Modena e Reggio Emilia 4112, Italy
| | - Estrella Lara
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Jose Pavia
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain.
| | - Maria Garcia-Fernandez
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain.
| | - Belen Gago
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Elisa Martin-Montañez
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| |
Collapse
|
7
|
Liu X, Yan J, Kirschner MW. Cell size homeostasis is tightly controlled throughout the cell cycle. PLoS Biol 2024; 22:e3002453. [PMID: 38180950 PMCID: PMC10769027 DOI: 10.1371/journal.pbio.3002453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
To achieve a stable size distribution over multiple generations, proliferating cells require a means of counteracting stochastic noise in the rate of growth, the time spent in various phases of the cell cycle, and the imprecision in the placement of the plane of cell division. In the most widely accepted model, cell size is thought to be regulated at the G1/S transition, such that cells smaller than a critical size pause at the end of G1 phase until they have accumulated mass to a predetermined size threshold, at which point the cells proceed through the rest of the cell cycle. However, a model, based solely on a specific size checkpoint at G1/S, cannot readily explain why cells with deficient G1/S control mechanisms are still able to maintain a very stable cell size distribution. Furthermore, such a model would not easily account for stochastic variation in cell size during the subsequent phases of the cell cycle, which cannot be anticipated at G1/S. To address such questions, we applied computationally enhanced quantitative phase microscopy (ceQPM) to populations of cultured human cell lines, which enables highly accurate measurement of cell dry mass of individual cells throughout the cell cycle. From these measurements, we have evaluated the factors that contribute to maintaining cell mass homeostasis at any point in the cell cycle. Our findings reveal that cell mass homeostasis is accurately maintained, despite disruptions to the normal G1/S machinery or perturbations in the rate of cell growth. Control of cell mass is generally not confined to regulation of the G1 length. Instead mass homeostasis is imposed throughout the cell cycle. In the cell lines examined, we find that the coefficient of variation (CV) in dry mass of cells in the population begins to decline well before the G1/S transition and continues to decline throughout S and G2 phases. Among the different cell types tested, the detailed response of cell growth rate to cell mass differs. However, in general, when it falls below that for exponential growth, the natural increase in the CV of cell mass is effectively constrained. We find that both mass-dependent cell cycle regulation and mass-dependent growth rate modulation contribute to reducing cell mass variation within the population. Through the interplay and coordination of these 2 processes, accurate cell mass homeostasis emerges. Such findings reveal previously unappreciated and very general principles of cell size control in proliferating cells. These same regulatory processes might also be operative in terminally differentiated cells. Further quantitative dynamical studies should lead to a better understanding of the underlying molecular mechanisms of cell size control.
Collapse
Affiliation(s)
- Xili Liu
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jiawei Yan
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Marc W. Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Fleifel D, Cook JG. G1 Dynamics at the Crossroads of Pluripotency and Cancer. Cancers (Basel) 2023; 15:4559. [PMID: 37760529 PMCID: PMC10526231 DOI: 10.3390/cancers15184559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
G1 cell cycle phase dynamics are regulated by intricate networks involving cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors, which control G1 progression and ensure proper cell cycle transitions. Moreover, adequate origin licensing in G1 phase, the first committed step of DNA replication in the subsequent S phase, is essential to maintain genome integrity. In this review, we highlight the intriguing parallels and disparities in G1 dynamics between stem cells and cancer cells, focusing on their regulatory mechanisms and functional outcomes. Notably, SOX2, OCT4, KLF4, and the pluripotency reprogramming facilitator c-MYC, known for their role in establishing and maintaining stem cell pluripotency, are also aberrantly expressed in certain cancer cells. In this review, we discuss recent advances in understanding the regulatory role of these pluripotency factors in G1 dynamics in the context of stem cells and cancer cells, which may offer new insights into the interconnections between pluripotency and tumorigenesis.
Collapse
Affiliation(s)
| | - Jeanette Gowen Cook
- Department of Biochemistry & Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
9
|
Johnson MS, Cook JG. Cell cycle exits and U-turns: Quiescence as multiple reversible forms of arrest. Fac Rev 2023; 12:5. [PMID: 36923701 PMCID: PMC10009890 DOI: 10.12703/r/12-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Cell proliferation control is essential during development and for maintaining adult tissues. Loss of that control promotes not only oncogenesis when cells proliferate inappropriately but also developmental abnormalities or degeneration when cells fail to proliferate when and where needed. To ensure that cells are produced at the right place and time, an intricate balance of pro-proliferative and anti-proliferative signals impacts the probability that cells undergo cell cycle exit to quiescence, or G0 phase. This brief review describes recent advances in our understanding of how and when quiescence is initiated and maintained in mammalian cells. We highlight the growing appreciation for quiescence as a collection of context-dependent distinct states.
Collapse
Affiliation(s)
- Martha Sharisha Johnson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
10
|
Tomasin R, Bruni-Cardoso A. The role of cellular quiescence in cancer - beyond a quiet passenger. J Cell Sci 2022; 135:276213. [PMID: 35929545 DOI: 10.1242/jcs.259676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quiescence, the ability to temporarily halt proliferation, is a conserved process that initially allowed survival of unicellular organisms during inhospitable times and later contributed to the rise of multicellular organisms, becoming key for cell differentiation, size control and tissue homeostasis. In this Review, we explore the concept of cancer as a disease that involves abnormal regulation of cellular quiescence at every step, from malignant transformation to metastatic outgrowth. Indeed, disrupted quiescence regulation can be linked to each of the so-called 'hallmarks of cancer'. As we argue here, quiescence induction contributes to immune evasion and resistance against cell death. In contrast, loss of quiescence underlies sustained proliferative signalling, evasion of growth suppressors, pro-tumorigenic inflammation, angiogenesis and genomic instability. Finally, both acquisition and loss of quiescence are involved in replicative immortality, metastasis and deregulated cellular energetics. We believe that a viewpoint that considers quiescence abnormalities that occur during oncogenesis might change the way we ask fundamental questions and the experimental approaches we take, potentially contributing to novel discoveries that might help to alter the course of cancer therapy.
Collapse
Affiliation(s)
- Rebeka Tomasin
- e-signal Lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Ave Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Alexandre Bruni-Cardoso
- e-signal Lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Ave Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|