1
|
Ji Y, Harris MA, Newton LM, Harris TJ, Fairlie WD, Lee EF, Hawkins CJ. Osteosarcoma cells depend on MCL-1 for survival, and osteosarcoma metastases respond to MCL-1 antagonism plus regorafenib in vivo. BMC Cancer 2024; 24:1350. [PMID: 39497108 PMCID: PMC11533409 DOI: 10.1186/s12885-024-13088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Osteosarcoma is the most common form of primary bone cancer, which primarily afflicts children and adolescents. Chemotherapy, consisting of doxorubicin, cisplatin and methotrexate (MAP) increased the 5-year osteosarcoma survival rate from 20% to approximately 60% by the 1980s. However, osteosarcoma survival rates have remained stagnant for several decades. Patients whose disease fails to respond to MAP receive second-line treatments such as etoposide and, in more recent years, the kinase inhibitor regorafenib. BCL-2 and its close relatives enforce cellular survival and have been implicated in the development and progression of various cancer types. BH3-mimetics antagonize pro-survival members of the BCL-2 family to directly stimulate apoptosis. These drugs have been proven to be efficacious in other cancer types, but their use in osteosarcoma has been relatively unexplored to date. We investigated the potential efficacy of BH3-mimetics against osteosarcoma cells in vitro and examined their cooperation with regorafenib in vivo. We demonstrated that osteosarcoma cell lines could be killed through inhibition of MCL-1 combined with BCL-2 or BCL-xL antagonism. Inhibition of MCL-1 also sensitized osteosarcoma cells to killing by second-line osteosarcoma treatments, particularly regorafenib. Importantly, we found that inhibition of MCL-1 with the BH3-mimetic S63845 combined with regorafenib significantly prolonged the survival of mice bearing pulmonary osteosarcoma metastases. Together, our results highlight the importance of MCL-1 in osteosarcoma cell survival and present a potential therapeutic avenue that may improve metastatic osteosarcoma patient outcomes.
Collapse
Affiliation(s)
- Yanhao Ji
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Michael A Harris
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Lucas M Newton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Swinburne University, Hawthorn, VIC, 3122, Australia
| | - Tiffany J Harris
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - W Douglas Fairlie
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Erinna F Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
2
|
Shenoy TN, Abdul Salam AA. Therapeutic potential of dietary bioactive compounds against anti-apoptotic Bcl-2 proteins in breast cancer. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 39257284 DOI: 10.1080/10408398.2024.2398636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Breast cancer remains a leading cause of cancer-related mortality among women worldwide. One of its defining features is resistance to apoptosis, driven by aberrant expression of apoptosis-related proteins, notably the overexpression of anti-apoptotic Bcl-2 proteins. These proteins enable breast cancer cells to evade apoptosis and develop resistance to chemotherapy, underscoring their critical role as therapeutic targets. Diet plays a significant role in breast cancer risk, potentially escalating or inhibiting cancer development. Recognizing the limitations of current treatments, extensive research is focused on exploring bioactive compounds derived from natural sources such as plants, fruits, vegetables, and spices. These compounds are valued for their ability to exert potent anticancer effects with minimal toxicity and side effects. While literature extensively covers the effects of various dietary compounds in inducing apoptosis in cancer cells, comprehensive information specifically on how dietary bioactive compounds modulate anti-apoptotic Bcl-2 protein expression in breast cancer is limited. This review aims to provide a comprehensive understanding of the interaction between Bcl-2 proteins and caspases in the regulation of apoptosis, as well as the impact of dietary bioactive compounds on the modulation of anti-apoptotic Bcl-2 in breast cancer. It further explores how these interactions influence breast cancer progression and treatment outcomes.
Collapse
Affiliation(s)
- Thripthi Nagesh Shenoy
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Smart SK, Yeung TY, Santos MO, McSwain LF, Wang X, Frye SV, Earp HS, DeRyckere D, Graham DK. MERTK Is a Potential Therapeutic Target in Ewing Sarcoma. Cancers (Basel) 2024; 16:2831. [PMID: 39199601 PMCID: PMC11352666 DOI: 10.3390/cancers16162831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Outcomes are poor in patients with advanced or relapsed Ewing sarcoma (EWS) and current treatments have significant short- and long-term side effects. New, less toxic and more effective treatments are urgently needed. MER proto-oncogene tyrosine kinase (MERTK) promotes tumor cell survival, metastasis, and resistance to cytotoxic and targeted therapies in a variety of cancers. MERTK was ubiquitously expressed in five EWS cell lines and five patient samples. Moreover, data from CRISPR-based library screens indicated that EWS cell lines are particularly dependent on MERTK. Treatment with MRX-2843, a first-in-class, MERTK-selective tyrosine kinase inhibitor currently in clinical trials, decreased the phosphorylation of MERTK and downstream signaling in a dose-dependent manner in A673 and TC106 cells and provided potent anti-tumor activity against all five EWS cell lines, with IC50 values ranging from 178 to 297 nM. Inhibition of MERTK correlated with anti-tumor activity, suggesting MERTK inhibition as a therapeutic mechanism of MRX-2843. Combined treatment with MRX-2843 and BCL-2 inhibitors venetoclax or navitoclax provided enhanced therapeutic activity compared to single agents. These data highlight MERTK as a promising therapeutic target in EWS and provide rationale for the development of MRX-2843 for the treatment of EWS, especially in combination with BCL-2 inhibitors.
Collapse
Affiliation(s)
- Sherri K. Smart
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (S.K.S.); (T.Y.Y.); (L.F.M.); (D.D.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tsz Y. Yeung
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (S.K.S.); (T.Y.Y.); (L.F.M.); (D.D.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Leon F. McSwain
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (S.K.S.); (T.Y.Y.); (L.F.M.); (D.D.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (X.W.); (S.V.F.)
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (X.W.); (S.V.F.)
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - H. Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Departments of Medicine and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (S.K.S.); (T.Y.Y.); (L.F.M.); (D.D.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (S.K.S.); (T.Y.Y.); (L.F.M.); (D.D.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Yu CY, Yeung TK, Fu WK, Poon RYC. BCL-XL regulates the timing of mitotic apoptosis independently of BCL2 and MCL1 compensation. Cell Death Dis 2024; 15:2. [PMID: 38172496 PMCID: PMC10764939 DOI: 10.1038/s41419-023-06404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Mitotic catastrophe induced by prolonged mitotic arrest is a major anticancer strategy. Although antiapoptotic BCL2-like proteins, including BCL-XL, are known to regulate apoptosis during mitotic arrest, adaptive changes in their expression can complicate loss-of-function studies. Our studies revealed compensatory alterations in the expression of BCL2 and MCL1 when BCL-XL is either downregulated or overexpressed. To circumvent their reciprocal regulation, we utilized a degron-mediated system to acutely silence BCL-XL just before mitosis. Our results show that in epithelial cell lines including HeLa and RPE1, BCL-XL and BCL2 acted collaboratively to suppress apoptosis during both unperturbed cell cycle and mitotic arrest. By tagging BCL-XL and BCL2 with a common epitope, we estimated that BCL-XL was less abundant than BCL2 in the cell. Nonetheless, BCL-XL played a more prominent antiapoptotic function than BCL2 during interphase and mitotic arrest. Loss of BCL-XL led to mitotic cell death primarily through a BAX-dependent process. Furthermore, silencing of BCL-XL led to the stabilization of MCL1, which played a significant role in buffering apoptosis during mitotic arrest. Nevertheless, even in a MCL1-deficient background, depletion of BCL-XL accelerated mitotic apoptosis. These findings underscore the pivotal involvement of BCL-XL in controlling timely apoptosis during mitotic arrest, despite adaptive changes in the expression of other BCL2-like proteins.
Collapse
Affiliation(s)
- Chun Yin Yu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Tsz Kwan Yeung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Wai Kuen Fu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Randy Y C Poon
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
5
|
Ebner J, Schmoellerl J, Piontek M, Manhart G, Troester S, Carter BZ, Neubauer H, Moriggl R, Szakács G, Zuber J, Köcher T, Andreeff M, Sperr WR, Valent P, Grebien F. ABCC1 and glutathione metabolism limit the efficacy of BCL-2 inhibitors in acute myeloid leukemia. Nat Commun 2023; 14:5709. [PMID: 37726279 PMCID: PMC10509209 DOI: 10.1038/s41467-023-41229-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
The BCL-2 inhibitor Venetoclax is a promising agent for the treatment of acute myeloid leukemia (AML). However, many patients are refractory to Venetoclax, and resistance develops quickly. ATP-binding cassette (ABC) transporters mediate chemotherapy resistance but their role in modulating the activity of targeted small-molecule inhibitors is unclear. Using CRISPR/Cas9 screening, we find that loss of ABCC1 strongly increases the sensitivity of AML cells to Venetoclax. Genetic and pharmacologic ABCC1 inactivation potentiates the anti-leukemic effects of BCL-2 inhibitors and efficiently re-sensitizes Venetoclax-resistant leukemia cells. Conversely, ABCC1 overexpression induces resistance to BCL-2 inhibitors by reducing intracellular drug levels, and high ABCC1 levels predicts poor response to Venetoclax therapy in patients. Consistent with ABCC1-specific export of glutathionylated substrates, inhibition of glutathione metabolism increases the potency of BCL-2 inhibitors. These results identify ABCC1 and glutathione metabolism as mechanisms limiting efficacy of BCL-2 inhibitors, which may pave the way to development of more effective therapies.
Collapse
Affiliation(s)
- Jessica Ebner
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Johannes Schmoellerl
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Martin Piontek
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gabriele Manhart
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Selina Troester
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heidi Neubauer
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gergely Szakács
- Center for Cancer Research, Medical University Vienna, Vienna, Austria
- Institute of Enzymology, Research Centre of Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Thomas Köcher
- Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| |
Collapse
|
6
|
Merjaneh N, Kim H, Escoto H, Metts J, Ray A, Bukowinski A, LeBlanc Z, Fair D, Watanbe M, Alva E, Todd K, Daley J, Hartt D, Cramer SL, Szabo S, Pressey JG. Strategies for the Treatment of Infantile Soft Tissue Sarcomas With BCOR Alterations. J Pediatr Hematol Oncol 2023; 45:315-321. [PMID: 36706311 PMCID: PMC11225610 DOI: 10.1097/mph.0000000000002620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/11/2022] [Indexed: 01/29/2023]
Abstract
BCOR alterations are described in ultra-rare infantile soft tissue sarcomas including primitive myxoid mesenchymal tumor of infancy and undifferentiated round cell sarcoma (URCS). Previous reports often describe dismal outcomes. Thus, we undertook a retrospective, multi-institutional study of infants with BCOR -rearranged soft tissue sarcomas. Nine patients aged 6 weeks to 15 months were identified. One tumor carried a BCOR :: CCNB3 fusion, whereas 7 tumors harbored internal tandem duplication of BCOR , including 4 cases classified as primitive myxoid mesenchymal tumor of infancy, 1 case as URCS, and 2 cases characterized by a "hybrid morphology" in our evaluation. Four patients underwent upfront surgery with residual disease that progressed locally after a median of 2.5 months. Locoregional recurrences were observed in hybrid patients, and the URCS case recurred with brain metastases. Complete radiographic responses after chemotherapy were achieved in patients treated with vincristine/doxorubicin/cyclophosphamide alternating with ifosfamide/etoposide, vincristine/doxorubicin/cyclophosphamide alternating with cyclophosphamide/etoposide (regimen I), and ifosfamide/carboplatin/etoposide. Seven patients received radiotherapy. With a median of 23.5 months off therapy, 8 patients are with no evidence of disease. In our study, observation was inadequate for the management of untreated postsurgical residual disease. Tumors demonstrated chemosensitivity with anthracycline-based regimens and ifosfamide/carboplatin/etoposide. Radiotherapy was required to achieve durable response in most patients.
Collapse
Affiliation(s)
- Nawal Merjaneh
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital
| | - Hee Kim
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital
| | | | - Jonathan Metts
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, St Petersburg, FL
| | - Anish Ray
- Cook Children’s Hospital, Fort Worth, TX
| | | | | | - Douglas Fair
- Primary Children’s Hospital, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | | | - Kevin Todd
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital
| | - Jessica Daley
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Duncan Hartt
- Primary Children’s Hospital, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Stuart L. Cramer
- Division of Hematology & Oncology, University of South Carolina, Columbia, SC
| | - Sara Szabo
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joseph G. Pressey
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
7
|
Fujii T, Matsuda Y. Novel formats of antibody conjugates: recent advances in payload diversity, conjugation, and linker chemistry. Expert Opin Biol Ther 2023; 23:1053-1065. [PMID: 37953519 DOI: 10.1080/14712598.2023.2276873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION In the field of bioconjugates, the focus on antibody - drug conjugates (ADCs) with novel payloads beyond the traditional categories of potent cytotoxic agents is increasing. These innovative ADCs exhibit various molecular formats, ranging from small-molecule payloads, such as immune agonists and proteolytic agents, to macromolecular payloads, such as oligonucleotides and proteins. AREAS COVERED This review offers an in-depth exploration of unconventional strategies for designing conjugates with novel mechanisms of action and notable examples of approaches that show promising prospects. Representative examples of novel format payloads and their classification, attributes, and appropriate conjugation techniques are discussed in detail. EXPERT OPINION The existing basic technologies used to manufacture ADCs can be directly applied to synthesize novel formatted conjugates. However, a wide variety of new payloads require the creation of customized technologies adapted to the unique characteristics of these payloads. Consequently, fundamental technologies, such as conjugation methods aimed at achieving high drug - antibody ratios and developing stable crosslinkers, are likely to become increasingly important research areas in the future.
Collapse
|
8
|
Michalski M, Bauer M, Walz F, Tümen D, Heumann P, Stöckert P, Gunckel M, Kunst C, Kandulski A, Schmid S, Müller M, Gülow K. Simultaneous Inhibition of Mcl-1 and Bcl-2 Induces Synergistic Cell Death in Hepatocellular Carcinoma. Biomedicines 2023; 11:1666. [PMID: 37371761 PMCID: PMC10295989 DOI: 10.3390/biomedicines11061666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the recent approval of new therapies, the prognosis for patients with hepatocellular carcinoma (HCC) remains poor. There is a clinical need for new highly effective therapeutic options. Here, we present a combined application of BH3-mimetics as a potential new treatment option for HCC. BH3-mimetics inhibit anti-apoptotic proteins of the BCL-2 family and, thus, trigger the intrinsic apoptosis pathway. Anti-apoptotic BCL-2 proteins such as Bcl-2 and Mcl-1 are frequently overexpressed in HCC. Therefore, we analyzed the efficacy of the two BH3-mimetics ABT-199 (Bcl-2 inhibitor) and MIK665 (Mcl-1 inhibitor) in HCC cell lines with differential expression levels of endogenous Bcl-2 and Mcl-1. While administration of one BH3-mimetic alone did not substantially trigger cell death, the combination of two inhibitors enhanced induction of the intrinsic apoptosis pathway. Both drugs acted synergistically, highlighting the effectivity of this specific BH3-mimetic combination, particularly in HCC cell lines. These results indicate the potential of combining inhibitors of the BCL-2 family as new therapeutic options in HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (M.M.); (M.B.); (F.W.); (D.T.); (P.H.); (P.S.); (M.G.); (C.K.); (A.K.); (S.S.); (M.M.)
| |
Collapse
|
9
|
Hartman ML, Czyz M. BCL-G: 20 years of research on a non-typical protein from the BCL-2 family. Cell Death Differ 2023:10.1038/s41418-023-01158-5. [PMID: 37031274 DOI: 10.1038/s41418-023-01158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Proteins from the BCL-2 family control cell survival and apoptosis in health and disease, and regulate apoptosis-unrelated cellular processes. BCL-Gonad (BCL-G, also known as BCL2-like 14) is a non-typical protein of the family as its long isoform (BCL-GL) consists of BH2 and BH3 domains without the BH1 motif. BCL-G is predominantly expressed in normal testes and different organs of the gastrointestinal tract. The complexity of regulatory mechanisms of BCL-G expression and post-translational modifications suggests that BCL-G may play distinct roles in different types of cells and disorders. While several genetic alterations of BCL2L14 have been reported, gene deletions and amplifications prevail, which is also confirmed by the analysis of sequencing data for different types of cancer. Although the studies validating the phenotypic consequences of genetic manipulations of BCL-G are limited, the role of BCL-G in apoptosis has been undermined. Recent studies using gene-perturbation approaches have revealed apoptosis-unrelated functions of BCL-G in intracellular trafficking, immunomodulation, and regulation of the mucin scaffolding network. These studies were, however, limited mainly to the role of BCL-G in the gastrointestinal tract. Therefore, further efforts using state-of-the-art methods and various types of cells are required to find out more about BCL-G activities. Deciphering the isoform-specific functions of BCL-G and the BCL-G interactome may result in the designing of novel therapeutic approaches, in which BCL-G activity will be either imitated using small-molecule BH3 mimetics or inhibited to counteract BCL-G upregulation. This review summarizes two decades of research on BCL-G.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| |
Collapse
|
10
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
11
|
Voutsadakis IA. Molecular alterations in anti-apoptotic BCL2 family proteins in breast cancer cell line models, drug sensitivities and dependencies to guide the development of BCL2 inhibitors. Gene X 2022; 847:146881. [PMID: 36100115 DOI: 10.1016/j.gene.2022.146881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Breast cancer is one of the most prevalent cancers and a cause of significant morbidity and mortality. Despite introduction of new therapies that improve control of the disease, metastatic breast cancer remains still incurable in most cases. Further therapies based on a better understanding of the pathogenesis of breast cancers and its sub-types are needed to improve outcomes. Apoptosis has arisen as a potential target in recent years. Research on therapeutic use of apoptosis promoting drugs could be advanced by cell line models of efficacy. METHODS Alterations in antiapoptotic members of the BCL2 family of proteins encoded by genes BCL2, BCL2L1, BCL2L2, MCL1 and BCL2A1 were evaluated in breast cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE). Sensitivities of breast cancer cell lines to apoptosis promoting drugs were evaluated using the Genomics of Drug Sensitivity in Cancer (GDSC) platform. Concomitant molecular aberrations of sensitive and resistant cell lines were examined for recurrent themes. Cell line dependencies were surveyed using publicly available CRISPR and RNAi arrays. RESULTS Breast cancer cell lines, in concordance with breast cancer patient samples, commonly exhibit amplifications in the BCL2 member MCL1 but not other molecular alterations in antiapoptotic family members. The panel of breast cancer cell lines with sensitivity to drugs inhibiting MCL1, with or without inhibition of other family members consists exclusively of cell lines of the basal phenotype. Sensitive cell lines possess fewer amplifications in the commonly amplified in breast cancer loci at 8q23, 11q13, 17q12 and 1q21. Dependency analysis suggests that in some instances activity of cancer related pathways such as PI3K/ AKT and WNT/ β-catenin may affect apoptosis threshold. CONCLUSION Breast cancer cell line models faithfully depict the most common molecular aberration in BCL2 family proteins observed in clinical breast cancer samples, MCL1 amplifications. Basal cell lines may be a preferred target of MCL1 inhibitors. However, concomitant aberrations, as explored in this report, are likely to be involved in ultimate sensitivity to anti-apoptosis targeting therapies.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada; Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| |
Collapse
|
12
|
Regulation of spermatogenic cell apoptosis by the pro-apoptotic proteins in the testicular tissues of mammalian and avian species. Anim Reprod Sci 2022; 247:107158. [DOI: 10.1016/j.anireprosci.2022.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
|
13
|
Sun SY. Targeting apoptosis to manage acquired resistance to third generation EGFR inhibitors. Front Med 2022; 16:701-713. [PMID: 36152124 DOI: 10.1007/s11684-022-0951-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
A significant clinical challenge in lung cancer treatment is management of the inevitable acquired resistance to third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs), such as osimertinib, which have shown remarkable success in the treatment of advanced NSCLC with EGFR activating mutations, in order to achieve maximal response duration or treatment remission. Apoptosis is a major type of programmed cell death tightly associated with cancer development and treatment. Evasion of apoptosis is considered a key hallmark of cancer and acquisition of apoptosis resistance is accordingly a key mechanism of drug acquired resistance in cancer therapy. It has been clearly shown that effective induction of apoptosis is a key mechanism for third generation EGFR-TKIs, particularly osimertinib, to exert their therapeutic efficacies and the development of resistance to apoptosis is tightly associated with the emergence of acquired resistance. Hence, restoration of cell sensitivity to undergo apoptosis using various means promises an effective strategy for the management of acquired resistance to third generation EGFR-TKIs.
Collapse
Affiliation(s)
- Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
14
|
Ferraro MG, Piccolo M, Misso G, Santamaria R, Irace C. Bioactivity and Development of Small Non-Platinum Metal-Based Chemotherapeutics. Pharmaceutics 2022; 14:pharmaceutics14050954. [PMID: 35631543 PMCID: PMC9147010 DOI: 10.3390/pharmaceutics14050954] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Countless expectations converge in the multidisciplinary endeavour for the search and development of effective and safe drugs in fighting cancer. Although they still embody a minority of the pharmacological agents currently in clinical use, metal-based complexes have great yet unexplored potential, which probably hides forthcoming anticancer drugs. Following the historical success of cisplatin and congeners, but also taking advantage of conventional chemotherapy limitations that emerged with applications in the clinic, the design and development of non-platinum metal-based chemotherapeutics, either as drugs or prodrugs, represents a rapidly evolving field wherein candidate compounds can be fine-tuned to access interactions with druggable biological targets. Moving in this direction, over the last few decades platinum family metals, e.g., ruthenium and palladium, have been largely proposed. Indeed, transition metals and molecular platforms where they originate are endowed with unique chemical and biological features based on, but not limited to, redox activity and coordination geometries, as well as ligand selection (including their inherent reactivity and bioactivity). Herein, current applications and progress in metal-based chemoth are reviewed. Converging on the recent literature, new attractive chemotherapeutics based on transition metals other than platinum—and their bioactivity and mechanisms of action—are examined and discussed. A special focus is committed to anticancer agents based on ruthenium, palladium, rhodium, and iridium, but also to gold derivatives, for which more experimental data are nowadays available. Next to platinum-based agents, ruthenium-based candidate drugs were the first to reach the stage of clinical evaluation in humans, opening new scenarios for the development of alternative chemotherapeutic options to treat cancer.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Gabriella Misso
- Department of Precision Medicine, School of Medicine and Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (G.M.); (C.I.)
| | - Rita Santamaria
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
- Correspondence: (G.M.); (C.I.)
| |
Collapse
|