1
|
Nuga O, Richardson K, Patel NC, Wang X, Pagala V, Stephan A, Peng J, Demontis F, Todi SV. Linear poly-ubiquitin remodels the proteome and influences hundreds of regulators in Drosophila. G3 (BETHESDA, MD.) 2024; 14:jkae209. [PMID: 39325835 PMCID: PMC11540324 DOI: 10.1093/g3journal/jkae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024]
Abstract
Ubiquitin controls many cellular processes via its posttranslational conjugation onto substrates. Its use is highly variable due to its ability to form poly-ubiquitin chains with various topologies. Among them, linear chains have emerged as important regulators of immune responses and protein degradation. Previous studies in Drosophila melanogaster found that expression of linear poly-ubiquitin that cannot be dismantled into single moieties leads to their ubiquitination and degradation or, alternatively, to their conjugation onto proteins. However, it remains largely unknown which proteins are sensitive to linear poly-ubiquitin. To address this question, here we expanded the toolkit to modulate linear chains and conducted ultra-deep coverage proteomics from flies that express noncleavable, linear chains comprising 2, 4, or 6 moieties. We found that these chains regulate shared and distinct cellular processes in Drosophila by impacting hundreds of proteins, such as the circadian factor Cryptochrome. Our results provide key insight into the proteome subsets and cellular pathways that are influenced by linear poly-ubiquitin chains with distinct lengths and suggest that the ubiquitin system is exceedingly pliable.
Collapse
Affiliation(s)
- Oluwademilade Nuga
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | - Kristin Richardson
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | - Nikhil C Patel
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
- Department of Neurology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| |
Collapse
|
2
|
de la Monte SM, Tong M. Dysregulated mTOR networks in experimental sporadic Alzheimer's disease. Front Cell Neurosci 2024; 18:1432359. [PMID: 39386180 PMCID: PMC11461251 DOI: 10.3389/fncel.2024.1432359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Background Beyond the signature amyloid-beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been shown to exhibit dysregulated metabolic signaling through insulin and insulin-like growth factor (IGF) networks that crosstalk with the mechanistic target of rapamycin (mTOR). Its broad impact on brain structure and function suggests that mTOR is likely an important therapeutic target for AD. Objective This study characterizes temporal lobe (TL) mTOR signaling abnormalities in a rat model of sporadic AD neurodegeneration. Methods Long Evans rats were given intracerebroventricular injections of streptozotocin (ic-STZ) or saline (control), and 4 weeks later, they were administered neurobehavioral tests followed by terminal harvesting of the TLs for histopathological study and measurement of AD biomarkers, neuroinflammatory/oxidative stress markers, and total and phosphorylated insulin/IGF-1-Akt-mTOR pathway signaling molecules. Results Rats treated with ic-STZ exhibited significantly impaired performance on Rotarod (RR) and Morris Water Maze (MWM) tests, brain atrophy, TL and hippocampal neuronal and white matter degeneration, and elevated TL pTau, AβPP, Aβ, AChE, 4-HNE, and GAPDH and reduced ubiquitin, IL-2, IL-6, and IFN-γ immunoreactivities. In addition, ic-STZ reduced TL pY1135/1136-IGF-1R, Akt, PTEN, pS380-PTEN, pS2448-mTOR, p70S6K, pT412-p70S6K, p/T-pT412-p70S6K, p/T-Rictor, and p/T-Raptor. Conclusion Experimental ic-STZ-induced sporadic AD-type neurodegeneration with neurobehavioral dysfunctions associated with inhibition of mTOR signaling networks linked to energy metabolism, plasticity, and white matter integrity.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Medicine, Pathology and Laboratory Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Women and Infants Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| |
Collapse
|
3
|
Nuga O, Richardson K, Patel N, Wang X, Pagala V, Stephan A, Peng J, Demontis F, Todi SV. Linear ubiquitin chains remodel the proteome and influence the levels of hundreds of regulators in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593206. [PMID: 38766269 PMCID: PMC11100727 DOI: 10.1101/2024.05.09.593206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ubiquitin controls many cellular processes via its post-translational conjugation onto substrates. Its use is highly variable due to its ability to form poly-ubiquitin with various topologies. Among them, linear chains have emerged as important regulators of immune responses and protein degradation. Previous studies in Drosophila melanogaster found that expression of linear poly-ubiquitin that cannot be dismantled into single moieties leads to their own ubiquitination and degradation or, alternatively, to their conjugation onto proteins. However, it remains largely unknown which proteins are sensitive to linear poly-ubiquitin. To address this question, here we expanded the toolkit to modulate linear chains and conducted ultra-deep coverage proteomics from flies that express non-cleavable, linear chains comprising 2, 4, or 6 moieties. We found that these chains regulate shared and distinct cellular processes in Drosophila by impacting hundreds of proteins. Our results provide key insight into the proteome subsets and cellular pathways that are influenced by linear poly-ubiquitin with distinct lengths and suggest that the ubiquitin system is exceedingly pliable.
Collapse
|
4
|
Furthmann N, Bader V, Angersbach L, Blusch A, Goel S, Sánchez-Vicente A, Krause LJ, Chaban SA, Grover P, Trinkaus VA, van Well EM, Jaugstetter M, Tschulik K, Damgaard RB, Saft C, Ellrichmann G, Gold R, Koch A, Englert B, Westenberger A, Klein C, Jungbluth L, Sachse C, Behrends C, Glatzel M, Hartl FU, Nakamura K, Christine CW, Huang EJ, Tatzelt J, Winklhofer KF. NEMO reshapes the α-Synuclein aggregate interface and acts as an autophagy adapter by co-condensation with p62. Nat Commun 2023; 14:8368. [PMID: 38114471 PMCID: PMC10730909 DOI: 10.1038/s41467-023-44033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
NEMO is a ubiquitin-binding protein which regulates canonical NF-κB pathway activation in innate immune signaling, cell death regulation and host-pathogen interactions. Here we identify an NF-κB-independent function of NEMO in proteostasis regulation by promoting autophagosomal clearance of protein aggregates. NEMO-deficient cells accumulate misfolded proteins upon proteotoxic stress and are vulnerable to proteostasis challenges. Moreover, a patient with a mutation in the NEMO-encoding IKBKG gene resulting in defective binding of NEMO to linear ubiquitin chains, developed a widespread mixed brain proteinopathy, including α-synuclein, tau and TDP-43 pathology. NEMO amplifies linear ubiquitylation at α-synuclein aggregates and promotes the local concentration of p62 into foci. In vitro, NEMO lowers the threshold concentrations required for ubiquitin-dependent phase transition of p62. In summary, NEMO reshapes the aggregate surface for efficient autophagosomal clearance by providing a mobile phase at the aggregate interphase favoring co-condensation with p62.
Collapse
Affiliation(s)
- Nikolas Furthmann
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Lena Angersbach
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alina Blusch
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Simran Goel
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Ana Sánchez-Vicente
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Laura J Krause
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
| | - Sarah A Chaban
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Prerna Grover
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Victoria A Trinkaus
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Eva M van Well
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Maximilian Jaugstetter
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Kristina Tschulik
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Carsten Saft
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Gisa Ellrichmann
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten/Herdecke, 44135, Dortmund, Germany
| | - Ralf Gold
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Arend Koch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Benjamin Englert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117, Berlin, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, 81377, Munich, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Lisa Jungbluth
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Jülich, Germany
- Institute for Biological Information Processing (IBI-6/Cellular Structural Biology), Forschungszentrum Jülich, Jülich, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Jülich, Germany
- Institute for Biological Information Processing (IBI-6/Cellular Structural Biology), Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Chadwick W Christine
- Department of Neurology, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany.
- Cluster of Excellence RESOLV, 44801, Bochum, Germany.
| |
Collapse
|
5
|
Goel S, Oliva R, Jeganathan S, Bader V, Krause LJ, Kriegler S, Stender ID, Christine CW, Nakamura K, Hoffmann JE, Winter R, Tatzelt J, Winklhofer KF. Linear ubiquitination induces NEMO phase separation to activate NF-κB signaling. Life Sci Alliance 2023; 6:e202201607. [PMID: 36720498 PMCID: PMC9889916 DOI: 10.26508/lsa.202201607] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 02/02/2023] Open
Abstract
The NF-κB essential modulator NEMO is the core regulatory component of the inhibitor of κB kinase complex, which is a critical checkpoint in canonical NF-κB signaling downstream of innate and adaptive immune receptors. In response to various stimuli, such as TNF or IL-1β, NEMO binds to linear or M1-linked ubiquitin chains generated by LUBAC, promoting its oligomerization and subsequent activation of the associated kinases. Here we show that M1-ubiquitin chains induce phase separation of NEMO and the formation of NEMO assemblies in cells after exposure to IL-1β. Phase separation is promoted by both binding of NEMO to linear ubiquitin chains and covalent linkage of M1-ubiquitin to NEMO and is essential but not sufficient for its phase separation. Supporting the functional relevance of NEMO phase separation in signaling, a pathogenic NEMO mutant, which is impaired in both binding and linkage to linear ubiquitin chains, does not undergo phase separation and is defective in mediating IL-1β-induced NF-κB activation.
Collapse
Affiliation(s)
- Simran Goel
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Rosario Oliva
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Sadasivam Jeganathan
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Laura J Krause
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| | - Simon Kriegler
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Isabelle D Stender
- Protein Chemistry Facility, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Ken Nakamura
- Department of Neurology, UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Jan-Erik Hoffmann
- Protein Chemistry Facility, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Miyoshi K, Shimizu S, Shiraki A, Egi M. Ubiquitination of the μ-opioid receptor regulates receptor internalization without affecting G i/o-mediated intracellular signaling or receptor phosphorylation. Biochem Biophys Res Commun 2023; 643:96-104. [PMID: 36592585 DOI: 10.1016/j.bbrc.2022.12.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Opioids are highly potent analgesics but develop tolerance. Previous studies have focused on phosphorylation of the μ-opioid receptor as it is involved in maintaining cellular sensitivity via desensitization, recycling, and degradation of the activated receptor. Recently, ubiquitination, another form of posttranslational modification has attracted attention in terms of triggering intracellular signaling and regulation of the activated receptor. Here, we generated a ubiquitination-deficient mutant of the μ-opioid receptor to investigate whether ubiquitination is involved in driving Gi/o-mediated analgesic signaling, receptor desensitization or subsequent receptor internalization. Our study shows that the Gi/o pathway and receptor phosphorylation do not require ubiquitination. Instead, ubiquitination regulates the internalization efficiency and might help in promoting internalization of the desensitized MOP.
Collapse
Affiliation(s)
- Kentaro Miyoshi
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto City, Kyoto Prefecture, Japan
| | - Satoshi Shimizu
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto City, Kyoto Prefecture, Japan; Department of Anesthesiology, Shiga University of Medical Science Setatsukinowacho, Otsu City, Shiga Prefecture, Japan.
| | - Atsuko Shiraki
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto City, Kyoto Prefecture, Japan
| | - Moritoki Egi
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto City, Kyoto Prefecture, Japan
| |
Collapse
|
7
|
Sato Y, Terawaki S, Oikawa D, Shimizu K, Okina Y, Ito H, Tokunaga F. Involvement of heterologous ubiquitination including linear ubiquitination in Alzheimer's disease and amyotrophic lateral sclerosis. Front Mol Biosci 2023; 10:1089213. [PMID: 36726375 PMCID: PMC9884707 DOI: 10.3389/fmolb.2023.1089213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
In neurodegenerative diseases such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), the progressive accumulation of ubiquitin-positive cytoplasmic inclusions leads to proteinopathy and neurodegeneration. Along with the seven types of Lys-linked ubiquitin chains, the linear ubiquitin chain assembly complex (LUBAC)-mediated Met1-linked linear ubiquitin chain, which activates the canonical NF-κB pathway, is also involved in cytoplasmic inclusions of tau in AD and TAR DNA-binding protein 43 in ALS. Post-translational modifications, including heterologous ubiquitination, affect proteasomal and autophagic degradation, inflammatory responses, and neurodegeneration. Single nucleotide polymorphisms (SNPs) in SHARPIN and RBCK1 (which encodes HOIL-1L), components of LUBAC, were recently identified as genetic risk factors of AD. A structural biological simulation suggested that most of the SHARPIN SNPs that cause an amino acid replacement affect the structure and function of SHARPIN. Thus, the aberrant LUBAC activity is related to AD. Protein ubiquitination and ubiquitin-binding proteins, such as ubiquilin 2 and NEMO, facilitate liquid-liquid phase separation (LLPS), and linear ubiquitination seems to promote efficient LLPS. Therefore, the development of therapeutic approaches that target ubiquitination, such as proteolysis-targeting chimeras (PROTACs) and inhibitors of ubiquitin ligases, including LUBAC, is expected to be an additional effective strategy to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, Tottori, Japan,Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Seigo Terawaki
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan,Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Daisuke Oikawa
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kouhei Shimizu
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshinori Okina
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan,*Correspondence: Fuminori Tokunaga,
| |
Collapse
|
8
|
Wu Z, Berlemann LA, Bader V, Sehr DA, Dawin E, Covallero A, Meschede J, Angersbach L, Showkat C, Michaelis JB, Münch C, Rieger B, Namgaladze D, Herrera MG, Fiesel FC, Springer W, Mendes M, Stepien J, Barkovits K, Marcus K, Sickmann A, Dittmar G, Busch KB, Riedel D, Brini M, Tatzelt J, Cali T, Winklhofer KF. LUBAC assembles a ubiquitin signaling platform at mitochondria for signal amplification and transport of NF-κB to the nucleus. EMBO J 2022; 41:e112006. [PMID: 36398858 PMCID: PMC9753471 DOI: 10.15252/embj.2022112006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
Mitochondria are increasingly recognized as cellular hubs to orchestrate signaling pathways that regulate metabolism, redox homeostasis, and cell fate decisions. Recent research revealed a role of mitochondria also in innate immune signaling; however, the mechanisms of how mitochondria affect signal transduction are poorly understood. Here, we show that the NF-κB pathway activated by TNF employs mitochondria as a platform for signal amplification and shuttling of activated NF-κB to the nucleus. TNF treatment induces the recruitment of HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), and its substrate NEMO to the outer mitochondrial membrane, where M1- and K63-linked ubiquitin chains are generated. NF-κB is locally activated and transported to the nucleus by mitochondria, leading to an increase in mitochondria-nucleus contact sites in a HOIP-dependent manner. Notably, TNF-induced stabilization of the mitochondrial kinase PINK1 furthermore contributes to signal amplification by antagonizing the M1-ubiquitin-specific deubiquitinase OTULIN. Overall, our study reveals a role for mitochondria in amplifying TNF-mediated NF-κB activation, both serving as a signaling platform, as well as a transport mode for activated NF-κB to the nuclear.
Collapse
Affiliation(s)
- Zhixiao Wu
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Lena A Berlemann
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Dominik A Sehr
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Eva Dawin
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
- Leibniz‐Institut für Analytische Wissenschaften—ISAS—e.VDortmundGermany
| | | | - Jens Meschede
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Lena Angersbach
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Cathrin Showkat
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Jonas B Michaelis
- Faculty of Medicine, Institute of Biochemistry IIGoethe University FrankfurtFrankfurt am MainGermany
| | - Christian Münch
- Faculty of Medicine, Institute of Biochemistry IIGoethe University FrankfurtFrankfurt am MainGermany
| | - Bettina Rieger
- Institute for Integrative Cell Biology and Physiology, Faculty of BiologyUniversity of MünsterMünsterGermany
| | - Dmitry Namgaladze
- Institute of Biochemistry I, Faculty of MedicineGoethe‐University FrankfurtFrankfurtGermany
| | - Maria Georgina Herrera
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Fabienne C Fiesel
- Department of NeuroscienceMayo ClinicJacksonvilleFLUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFLUSA
| | - Wolfdieter Springer
- Department of NeuroscienceMayo ClinicJacksonvilleFLUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFLUSA
| | - Marta Mendes
- Proteomics of Cellular Signaling, Department of Infection and ImmunityLuxembourg Institute of HealthStrassenLuxembourg
| | - Jennifer Stepien
- Medizinisches Proteom‐CenterRuhr‐Universität BochumBochumGermany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI)Ruhr‐University BochumBochumGermany
| | - Katalin Barkovits
- Medizinisches Proteom‐CenterRuhr‐Universität BochumBochumGermany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI)Ruhr‐University BochumBochumGermany
| | - Katrin Marcus
- Medizinisches Proteom‐CenterRuhr‐Universität BochumBochumGermany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI)Ruhr‐University BochumBochumGermany
| | - Albert Sickmann
- Leibniz‐Institut für Analytische Wissenschaften—ISAS—e.VDortmundGermany
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Department of Infection and ImmunityLuxembourg Institute of HealthStrassenLuxembourg
- Department of Life Sciences and MedicineUniversity of LuxembourgBelvauxLuxembourg
| | - Karin B Busch
- Institute for Integrative Cell Biology and Physiology, Faculty of BiologyUniversity of MünsterMünsterGermany
| | - Dietmar Riedel
- Laboratory for Electron MicroscopyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Marisa Brini
- Department of BiologyUniversity of PaduaPaduaItaly
- Centro Studi per la Neurodegenerazione (CESNE)University of PadovaPaduaItaly
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
- RESOLV Cluster of ExcellenceRuhr University BochumBochumGermany
| | - Tito Cali
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- Centro Studi per la Neurodegenerazione (CESNE)University of PadovaPaduaItaly
- Padua Neuroscience Center (PNC)University of PaduaPaduaItaly
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
- RESOLV Cluster of ExcellenceRuhr University BochumBochumGermany
| |
Collapse
|