1
|
Arendrup MC, Armstrong-James D, Borman AM, Denning DW, Fisher MC, Gorton R, Maertens J, Martin-Loeches I, Mehra V, Mercier T, Price J, Rautemaa-Richardson R, Wake R, Andrews N, White PL. The Impact of the Fungal Priority Pathogens List on Medical Mycology: A Northern European Perspective. Open Forum Infect Dis 2024; 11:ofae372. [PMID: 39045012 PMCID: PMC11263880 DOI: 10.1093/ofid/ofae372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Fungal diseases represent a considerable global health concern, affecting >1 billion people annually. In response to this growing challenge, the World Health Organization introduced the pivotal fungal priority pathogens list (FPPL) in late 2022. The FPPL highlights the challenges in estimating the global burden of fungal diseases and antifungal resistance (AFR), as well as limited surveillance capabilities and lack of routine AFR testing. Furthermore, training programs should incorporate sufficient information on fungal diseases, necessitating global advocacy to educate health care professionals and scientists. Established international guidelines and the FPPL are vital in strengthening local guidance on tackling fungal diseases. Future iterations of the FPPL have the potential to refine the list further, addressing its limitations and advancing our collective ability to combat fungal diseases effectively. Napp Pharmaceuticals Limited (Mundipharma UK) organized a workshop with key experts from Northern Europe to discuss the impact of the FPPL on regional clinical practice.
Collapse
Affiliation(s)
- Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Andrew M Borman
- Mycology Reference Laboratory, UK Health Security Agency, Bristol, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - David W Denning
- Manchester Fungal Infection Group, The University of Manchester, Manchester, UK
- Global Action For Fungal Infections, Geneva, Switzerland
| | - Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Rebecca Gorton
- Department of Infection Sciences, Health Services Laboratories, London, UK
| | - Johan Maertens
- Department of Hematology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, St. James's Hospital, Dublin, Ireland
- Hospital Clinic, IDIBAPS, Universidad de Barcelona, Spain
- CIBERes, Barcelona, Spain
| | - Varun Mehra
- Department of Haematological Medicine, Kings College Hospital NHS Foundation Trust, London, UK
| | - Toine Mercier
- Department of Oncology-Hematology, AZ Sint-Maarten, Mechelen, Belgium
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Jessica Price
- Public Health Wales Mycology Reference Laboratory, UHW, Cardiff, UK
| | - Riina Rautemaa-Richardson
- Department of Infectious Diseases, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, NIHR Manchester Biomedical Research Centre (BRC) at the Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK
- Mycology Reference Centre Manchester (MRCM), ECMM Excellence Centre of Medical Mycology, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK
| | - Rachel Wake
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Natalie Andrews
- Napp Pharmaceuticals Limited, a member of the Mundipharma network of independent associated companies, Cambridge, UK
| | - P Lewis White
- Public Health Wales Mycology Reference Laboratory, UHW, Cardiff, UK
| |
Collapse
|
2
|
Chávez-Tinoco M, García-Ortega LF, Mancera E. Genetic modification of Candida maltosa, a non-pathogenic CTG species, reveals EFG1 function. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001447. [PMID: 38456839 PMCID: PMC10999747 DOI: 10.1099/mic.0.001447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Candida maltosa is closely related to important pathogenic Candida species, especially C. tropicalis and C. albicans, but it has been rarely isolated from humans. For this reason, through comparative studies, it could be a powerful model to understand the genetic underpinnings of the pathogenicity of Candida species. Here, we generated a cohesive assembly of the C. maltosa genome and developed genetic engineering tools that will facilitate studying this species at a molecular level. We used a combination of short and long-read sequencing to build a polished genomic draft composed of 14 Mbp, 45 contigs and close to 5700 genes. This assembly represents a substantial improvement from the currently available sequences that are composed of thousands of contigs. Genomic comparison with C. albicans and C. tropicalis revealed a substantial reduction in the total number of genes in C. maltosa. However, gene loss seems not to be associated to the avirulence of this species given that most genes that have been previously associated with pathogenicity were also present in C. maltosa. To be able to edit the genome of C. maltosa we generated a set of triple auxotrophic strains so that gene deletions can be performed similarly to what has been routinely done in pathogenic Candida species. As a proof of concept, we generated gene knockouts of EFG1, a gene that encodes a transcription factor that is essential for filamentation and biofilm formation in C. albicans and C. tropicalis. Characterization of these mutants showed that Efg1 also plays a role in biofilm formation and filamentous growth in C. maltosa, but it seems to be a repressor of filamentation in this species. The genome assembly and auxotrophic mutants developed here are a key step forward to start using C. maltosa for comparative and evolutionary studies at a molecular level.
Collapse
Affiliation(s)
- Marco Chávez-Tinoco
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Luis F. García-Ortega
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Eugenio Mancera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| |
Collapse
|
3
|
Zaccaron AZ, Stergiopoulos I. Analysis of five near-complete genome assemblies of the tomato pathogen Cladosporium fulvum uncovers additional accessory chromosomes and structural variations induced by transposable elements effecting the loss of avirulence genes. BMC Biol 2024; 22:25. [PMID: 38281938 PMCID: PMC10823647 DOI: 10.1186/s12915-024-01818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Fungal plant pathogens have dynamic genomes that allow them to rapidly adapt to adverse conditions and overcome host resistance. One way by which this dynamic genome plasticity is expressed is through effector gene loss, which enables plant pathogens to overcome recognition by cognate resistance genes in the host. However, the exact nature of these loses remains elusive in many fungi. This includes the tomato pathogen Cladosporium fulvum, which is the first fungal plant pathogen from which avirulence (Avr) genes were ever cloned and in which loss of Avr genes is often reported as a means of overcoming recognition by cognate tomato Cf resistance genes. A recent near-complete reference genome assembly of C. fulvum isolate Race 5 revealed a compartmentalized genome architecture and the presence of an accessory chromosome, thereby creating a basis for studying genome plasticity in fungal plant pathogens and its impact on avirulence genes. RESULTS Here, we obtained near-complete genome assemblies of four additional C. fulvum isolates. The genome assemblies had similar sizes (66.96 to 67.78 Mb), number of predicted genes (14,895 to 14,981), and estimated completeness (98.8 to 98.9%). Comparative analysis that included the genome of isolate Race 5 revealed high levels of synteny and colinearity, which extended to the density and distribution of repetitive elements and of repeat-induced point (RIP) mutations across homologous chromosomes. Nonetheless, structural variations, likely mediated by transposable elements and effecting the deletion of the avirulence genes Avr4E, Avr5, and Avr9, were also identified. The isolates further shared a core set of 13 chromosomes, but two accessory chromosomes were identified as well. Accessory chromosomes were significantly smaller in size, and one carried pseudogenized copies of two effector genes. Whole-genome alignments further revealed genomic islands of near-zero nucleotide diversity interspersed with islands of high nucleotide diversity that co-localized with repeat-rich regions. These regions were likely generated by RIP, which generally asymmetrically affected the genome of C. fulvum. CONCLUSIONS Our results reveal new evolutionary aspects of the C. fulvum genome and provide new insights on the importance of genomic structural variations in overcoming host resistance in fungal plant pathogens.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616-8751, USA
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616-8751, USA.
| |
Collapse
|
4
|
Angiolella L, Rojas F, Giammarino A, Bellucci N, Giusiano G. Identification of Virulence Factors in Isolates of Candida haemulonii, Candida albicans and Clavispora lusitaniae with Low Susceptibility and Resistance to Fluconazole and Amphotericin B. Microorganisms 2024; 12:212. [PMID: 38276197 PMCID: PMC10819056 DOI: 10.3390/microorganisms12010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Emerging life-threatening multidrug-resistant (MDR) species such as the C. haemulonii species complex, Clavispora lusitaniae (sin. C. lusitaniae), and other Candida species are considered as an increasing risk for human health in the near future. (1) Background: Many studies have emphasized that the increase in drug resistance can be associated with several virulence factors in Candida and its knowledge is also essential in developing new antifungal strategies. (2) Methods: Hydrophobicity, adherence, biofilm formation, lipase activity, resistance to osmotic stress, and virulence 'in vivo' on G. mellonella larvae were studied in isolates of C. haemulonii, C. albicans, and C. lusitaniae with low susceptibility and resistance to fluconazole and amphotericin B. (3) Results: Intra- and interspecies variability were observed. C. haemulonii showed high hydrophobicity and the ability to adhere to and form biofilm. C. lusitaniae was less hydrophobic, was biofilm-formation-strain-dependent, and did not show lipase activity. Larvae inoculated with C. albicans isolates displayed significantly higher mortality rates than those infected with C. haemulonii and C. lusitaniae. (4) Conclusions: The ability to adhere to and form biofilms associated with their hydrophobic capacity, to adapt to stress, and to infect within an in vivo model, observed in these non-wild-type Candida and Clavispora isolates, shows their marked virulence features. Since factors that define virulence are related to the development of the resistance of these fungi to the few antifungals available for clinical use, differences in the physiology of these cells must be considered to develop new antifungal therapies.
Collapse
Affiliation(s)
- Letizia Angiolella
- Department of Public Health and Infectious Diseases “Sapienza”, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.G.); (N.B.)
| | - Florencia Rojas
- Departamento de Micología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET, Resistencia 3500, Argentina; (F.R.); (G.G.)
| | - Andrea Giammarino
- Department of Public Health and Infectious Diseases “Sapienza”, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.G.); (N.B.)
| | - Nicolò Bellucci
- Department of Public Health and Infectious Diseases “Sapienza”, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.G.); (N.B.)
| | - Gustavo Giusiano
- Departamento de Micología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET, Resistencia 3500, Argentina; (F.R.); (G.G.)
| |
Collapse
|
5
|
Schikora-Tamarit MÀ, Gabaldón T. Recent gene selection and drug resistance underscore clinical adaptation across Candida species. Nat Microbiol 2024; 9:284-307. [PMID: 38177305 PMCID: PMC10769879 DOI: 10.1038/s41564-023-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
Understanding how microbial pathogens adapt to treatments, humans and clinical environments is key to infer mechanisms of virulence, transmission and drug resistance. This may help improve therapies and diagnostics for infections with a poor prognosis, such as those caused by fungal pathogens, including Candida. Here we analysed genomic variants across approximately 2,000 isolates from six Candida species (C. glabrata, C. auris, C. albicans, C. tropicalis, C. parapsilosis and C. orthopsilosis) and identified genes under recent selection, suggesting a highly complex clinical adaptation. These involve species-specific and convergently affected adaptive mechanisms, such as adhesion. Using convergence-based genome-wide association studies we identified known drivers of drug resistance alongside potentially novel players. Finally, our analyses reveal an important role of structural variants and suggest an unexpected involvement of (para)sexual recombination in the spread of resistance. Our results provide insights on how opportunistic pathogens adapt to human-related environments and unearth candidate genes that deserve future attention.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Centro Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
6
|
Gabaldón T. Nothing makes sense in drug resistance except in the light of evolution. Curr Opin Microbiol 2023; 75:102350. [PMID: 37348192 DOI: 10.1016/j.mib.2023.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/24/2023]
Abstract
Our ability to fight infectious diseases is being increasingly compromised due to the emergence and spread of pathogens that become resistant to one or several drugs. This phenomenon is ubiquitous among pathogens and has parallels in cancer treatment. Given the urgency of the problem, there is a need for a paradigm shift in drug therapy toward one in which the objective to prevent the evolution of drug resistance is considered alongside the main objective of eliminating the infection or tumor. Here, I stress the importance of considering an evolutionary perspective to achieve this goal, and review recent advances in this direction, including therapies that exploit the fitness trade-offs of resistance.
Collapse
Affiliation(s)
- Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain.
| |
Collapse
|
7
|
Wang Y, Guo X, Zhang X, Chen P, Wang W, Hu S, Ma T, Zhou X, Li D, Yang Y. In Vivo Microevolutionary Analysis of a Fatal Case of Rhinofacial and Disseminated Mycosis Due to Azole-Drug-Resistant Candida Species. J Fungi (Basel) 2023; 9:815. [PMID: 37623586 PMCID: PMC10455694 DOI: 10.3390/jof9080815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Ten Candida species strains were isolated from the first known fatal case of rhinofacial and rhino-orbital-cerebral candidiasis. Among them, five strains of Candida parapsilosis complex were isolated during the early stage of hospitalization, while five strains of Candida tropicalis were isolated in the later stages of the disease. Using whole-genome sequencing, we distinguished the five strains of C. parapsilosis complex as four Candida metapsilosis strains and one Candida parapsilosis strain. Antifungal susceptibility testing showed that the five strains of C. parapsilosis complex were susceptible to all antifungal drugs, while five C. tropicalis strains had high minimum inhibitory concentrations to azoles, whereas antifungal-drug resistance gene analysis revealed the causes of azole resistance in such strains. For the first time, we analyzed the microevolutionary characteristics of pathogenic fungi in human hosts and inferred the infection time and parallel evolution of C. tropicalis strains. Molecular clock analysis revealed that azole-resistant C. tropicalis infection occurred during the first round of therapy, followed by divergence via parallel evolution in vivo. The presence/absence variations indicated a potential decrease in the virulence of genomes in strains isolated following antifungal drug treatment, despite the absence of observed clinical improvement in the conditions of the patient. These results suggest that genomic analysis could serve as an auxiliary tool in guiding clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yuchen Wang
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjing 300457, China;
| | - Xinran Zhang
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
| | - Ping Chen
- Division of Dermatology and Mycological Lab, Peking University Third Hospital, Beijing 100191, China
| | - Wenhui Wang
- Division of Dermatology and Mycological Lab, Peking University Third Hospital, Beijing 100191, China
| | - Shan Hu
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
| | - Teng Ma
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
| | - Xingchen Zhou
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dongming Li
- Division of Dermatology and Mycological Lab, Peking University Third Hospital, Beijing 100191, China
| | - Ying Yang
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
| |
Collapse
|
8
|
Daneshnia F, de Almeida Júnior JN, Ilkit M, Lombardi L, Perry AM, Gao M, Nobile CJ, Egger M, Perlin DS, Zhai B, Hohl TM, Gabaldón T, Colombo AL, Hoenigl M, Arastehfar A. Worldwide emergence of fluconazole-resistant Candida parapsilosis: current framework and future research roadmap. THE LANCET. MICROBE 2023; 4:e470-e480. [PMID: 37121240 PMCID: PMC10634418 DOI: 10.1016/s2666-5247(23)00067-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 05/02/2023]
Abstract
Candida parapsilosis is one of the most commen causes of life-threatening candidaemia, particularly in premature neonates, individuals with cancer of the haematopoietic system, and recipients of organ transplants. Historically, drug-susceptible strains have been linked to clonal outbreaks. However, worldwide studies started since 2018 have reported severe outbreaks among adults caused by fluconazole-resistant strains. Outbreaks caused by fluconazole-resistant strains are associated with high mortality rates and can persist despite strict infection control strategies. The emergence of resistance threatens the efficacy of azoles, which is the most widely used class of antifungals and the only available oral treatment option for candidaemia. The fact that most patients infected with fluconazole-resistant strains are azole-naive underscores the high potential adaptability of fluconazole-resistant strains to diverse hosts, environmental niches, and reservoirs. Another concern is the multidrug-resistant and echinocandin-tolerant C parapsilosis isolates, which emerged in 2020. Raising awareness, establishing effective clinical interventions, and understanding the biology and pathogenesis of fluconazole-resistant C parapsilosis are urgently needed to improve treatment strategies and outcomes.
Collapse
Affiliation(s)
- Farnaz Daneshnia
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - João N de Almeida Júnior
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; Clinical Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Türkiye
| | - Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Austin M Perry
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA; Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, USA
| | - Marilyn Gao
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA; Health Sciences Research Institute, University of California Merced, Merced, CA, USA
| | - Matthias Egger
- Division of Infectious Diseases, ECMM Excellence Center, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA; Department of Medical Sciences, Hackensack School of Medicine, Nutley, NJ, USA; Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Bing Zhai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine and Human Oncology, and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Toni Gabaldón
- Life Sciences Programme, Supercomputing Center, Barcelona, Spain; Institute for Research in Biomedicine, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Barcelona, Spain
| | - Arnaldo Lopes Colombo
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Bio TechMed, Graz, Austria; Translational Medical Mycology Research Group, Medical University of Graz, Graz, Austria.
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Alastruey-Izquierdo A, Martín-Galiano AJ. The challenges of the genome-based identification of antifungal resistance in the clinical routine. Front Microbiol 2023; 14:1134755. [PMID: 37152754 PMCID: PMC10157239 DOI: 10.3389/fmicb.2023.1134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
The increasing number of chronic and life-threatening infections caused by antimicrobial resistant fungal isolates is of critical concern. Low DNA sequencing cost may facilitate the identification of the genomic profile leading to resistance, the resistome, to rationally optimize the design of antifungal therapies. However, compared to bacteria, initiatives for resistome detection in eukaryotic pathogens are underdeveloped. Firstly, reported mutations in antifungal targets leading to reduced susceptibility must be extensively collected from the literature to generate comprehensive databases. This information should be complemented with specific laboratory screenings to detect the highest number possible of relevant genetic changes in primary targets and associations between resistance and other genomic markers. Strikingly, some drug resistant strains experience high-level genetic changes such as ploidy variation as much as duplications and reorganizations of specific chromosomes. Such variations involve allelic dominance, gene dosage increments and target expression regime effects that should be explicitly parameterized in antifungal resistome prediction algorithms. Clinical data indicate that predictors need to consider the precise pathogen species and drug levels of detail, instead of just genus and drug class. The concomitant needs for mutation accuracy and assembly quality assurance suggest hybrid sequencing approaches involving third-generation methods will be utilized. Moreover, fatal fast infections, like fungemia and meningitis, will further require both sequencing and analysis facilities are available in-house. Altogether, the complex nature of antifungal resistance demands extensive sequencing, data acquisition and processing, bioinformatic analysis pipelines, and standard protocols to be accomplished prior to genome-based protocols are applied in the clinical setting.
Collapse
Affiliation(s)
- Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
10
|
Kress A, Poch O, Lecompte O, Thompson JD. Real or fake? Measuring the impact of protein annotation errors on estimates of domain gain and loss events. FRONTIERS IN BIOINFORMATICS 2023; 3:1178926. [PMID: 37151482 PMCID: PMC10158824 DOI: 10.3389/fbinf.2023.1178926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Protein annotation errors can have significant consequences in a wide range of fields, ranging from protein structure and function prediction to biomedical research, drug discovery, and biotechnology. By comparing the domains of different proteins, scientists can identify common domains, classify proteins based on their domain architecture, and highlight proteins that have evolved differently in one or more species or clades. However, genome-wide identification of different protein domain architectures involves a complex error-prone pipeline that includes genome sequencing, prediction of gene exon/intron structures, and inference of protein sequences and domain annotations. Here we developed an automated fact-checking approach to distinguish true domain loss/gain events from false events caused by errors that occur during the annotation process. Using genome-wide ortholog sets and taking advantage of the high-quality human and Saccharomyces cerevisiae genome annotations, we analyzed the domain gain and loss events in the predicted proteomes of 9 non-human primates (NHP) and 20 non-S. cerevisiae fungi (NSF) as annotated in the Uniprot and Interpro databases. Our approach allowed us to quantify the impact of errors on estimates of protein domain gains and losses, and we show that domain losses are over-estimated ten-fold and three-fold in the NHP and NSF proteins respectively. This is in line with previous studies of gene-level losses, where issues with genome sequencing or gene annotation led to genes being falsely inferred as absent. In addition, we show that insistent protein domain annotations are a major factor contributing to the false events. For the first time, to our knowledge, we show that domain gains are also over-estimated by three-fold and two-fold respectively in NHP and NSF proteins. Based on our more accurate estimates, we infer that true domain losses and gains in NHP with respect to humans are observed at similar rates, while domain gains in the more divergent NSF are observed twice as frequently as domain losses with respect to S. cerevisiae. This study highlights the need to critically examine the scientific validity of protein annotations, and represents a significant step toward scalable computational fact-checking methods that may 1 day mitigate the propagation of wrong information in protein databases.
Collapse
|
11
|
Raman Metabolomics of Candida auris Clades: Profiling and Barcode Identification. Int J Mol Sci 2022; 23:ijms231911736. [PMID: 36233043 PMCID: PMC9569935 DOI: 10.3390/ijms231911736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
This study targets on-site/real-time taxonomic identification and metabolic profiling of seven different Candida auris clades/subclades by means of Raman spectroscopy and imaging. Representative Raman spectra from different Candida auris samples were systematically deconvoluted by means of a customized machine-learning algorithm linked to a Raman database in order to decode structural differences at the molecular scale. Raman analyses of metabolites revealed clear differences in cell walls and membrane structure among clades/subclades. Such differences are key in maintaining the integrity and physical strength of the cell walls in the dynamic response to external stress and drugs. It was found that Candida cells use the glucan structure of the extracellular matrix, the degree of α-chitin crystallinity, and the concentration of hydrogen bonds between its antiparallel chains to tailor cell walls’ flexibility. Besides being an effective ploy in survivorship by providing stiff shields in the α–1,3–glucan polymorph, the α–1,3–glycosidic linkages are also water-insoluble, thus forming a rigid and hydrophobic scaffold surrounded by a matrix of pliable and hydrated β–glucans. Raman analysis revealed a variety of strategies by different clades to balance stiffness, hydrophobicity, and impermeability in their cell walls. The selected strategies lead to differences in resistance toward specific environmental stresses of cationic/osmotic, oxidative, and nitrosative origins. A statistical validation based on principal component analysis was found only partially capable of distinguishing among Raman spectra of clades and subclades. Raman barcoding based on an algorithm converting spectrally deconvoluted Raman sub-bands into barcodes allowed for circumventing any speciation deficiency. Empowered by barcoding bioinformatics, Raman analyses, which are fast and require no sample preparation, allow on-site speciation and real-time selection of appropriate treatments.
Collapse
|