1
|
Subagia R, Schweiger W, Kunz-Vekiru E, Wolfsberger D, Schatzmayr G, Ribitsch D, Guebitz GM. Detoxification of aflatoxin B1 by a Bacillus subtilis spore coat protein through formation of the main metabolites AFQ1 and epi-AFQ1. Front Microbiol 2024; 15:1406707. [PMID: 39430102 PMCID: PMC11486672 DOI: 10.3389/fmicb.2024.1406707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
A variety of important agricultural crops host fungi from the Aspergillus genus can produce cancerogenic secondary metabolites such as aflatoxins. Consequently, novel strategies for detoxification and their removal from food and feed chains are required. Here, detoxification of Aflatoxin B1 (AFB1) by the Bacillus subtilis multi-copper oxidase CotA (BsCotA) was investigated. This laccase was recombinantly produced in E. coli while codon optimization led to duplication of the amount of active protein obtained. CuCl2 was added to the cultivation medium leading to a 25-fold increase of V max corresponding to improved incorporation of Cu2+ into the enzyme protein which is essential for the catalytic reaction. To avoid potential cytotoxicity of Cu2+, cultivation was performed at microaerobic conditions indeed leading to 100x more functional protein when compared to standard aerobic conditions. This was indicated by an increase of V max from 0.30 ± 0.02 to 33.56 ± 2.02 U/mg. Degradation kinetics of AFB1 using HPLC with fluorescence detection (HPLC-FLD) analysis indicated a theoretical substrate saturation above solubility in water. At a relatively high concentration of 500 μg/L, AFB1 was decomposed at 10.75 μg/Lh (0.17 nmol*min-1*mg-1) at a dosage of 0.2 μM BsCotA. AFQ1 and epi-AFQ1 were identified as the initial oxidation products according to mass spectrometry (i.e., HPLC-MS, HPLC-QTOF). None of these molecules were substrates for laccase but both decomposed in buffer. However, decomposition does not seem to be due to hydration of the vinyl ether in the terminal furan ring. Genotoxicity of the formed AFB1 was assessed in several dilutions based on the de-repression of the bacterial SOS response to DNA damage indicating about 80-times reduction in toxicity when compared to AFQ1. The results of this study indicate that BsCotA has high potential for the biological detoxification of aflatoxin B1.
Collapse
Affiliation(s)
- Raditya Subagia
- Department of Agrobiotechnology (IFA-Tulln), Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfgang Schweiger
- dsm-firmenich, Animal Nutrition and Health R&D Center Tulln, Tulln, Austria
| | | | | | - Gerd Schatzmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Doris Ribitsch
- Department of Agrobiotechnology (IFA-Tulln), Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg M. Guebitz
- Department of Agrobiotechnology (IFA-Tulln), Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
2
|
Bashiri G. F 420-dependent transformations in biosynthesis of secondary metabolites. Curr Opin Chem Biol 2024; 80:102468. [PMID: 38776765 DOI: 10.1016/j.cbpa.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Cofactor F420 has been historically known as the "methanogenic redox cofactor". It is now recognised that F420 has essential roles in the primary and secondary metabolism of archaea and bacteria. Recent discoveries highlight the role of F420 as a redox cofactor in the biosynthesis of various natural products, including ribosomally synthesised and post-translationally modified peptides, and a new class of nicotinamide adenine dinucleotide-based secondary metabolites. With the vast availability of (meta)genomic data, the identification of uncharacterised F420-dependent enzymes offers the potential for discovering novel secondary metabolites, presenting valuable prospects for clinical and biotechnological applications.
Collapse
Affiliation(s)
- Ghader Bashiri
- Laboratory of Microbial Biochemistry and Biotechnology, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
3
|
Arimboor R. Metabolites and degradation pathways of microbial detoxification of aflatoxins: a review. Mycotoxin Res 2024; 40:71-83. [PMID: 38151634 DOI: 10.1007/s12550-023-00515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
The degradation of aflatoxins using nonpathogenic microbes and their enzymes is emerging as a safe and economical alternative to chemical and physical methods for the detoxification of aflatoxins in food and feeds. Many bacteria and fungi have been identified as aflatoxin degraders. This review is focused on the chemical identification of microbial degradation products and their degradation pathways. The microbial degradations of aflatoxins are initiated by oxidation, hydroxylation, reduction, or elimination reactions mostly catalyzed by various enzymes belonging to the classes of laccase, reductases, and peroxidases. The resulting products with lesser chemical stability further undergo various reactions to form low molecular weight products. Studies on the chemical and biological nature of degraded products of aflatoxins are necessary to ensure the safety of the decontamination process. This review indicated the need for an integrated approach including decontamination studies using culture media and food matrices, proper identification and toxicity profiling of degraded products of aflatoxins, and interactions of microbes and the degradation products with food matrices for developing practical and effective microbial detoxification process.
Collapse
Affiliation(s)
- Ranjith Arimboor
- Spices Board Quality Evaluation Laboratory, SIPCOT, Gummidipoondi, Chennai, 601201, India.
| |
Collapse
|
4
|
Richter I, Hasan M, Kramer JW, Wein P, Krabbe J, Wojtas KP, Stinear TP, Pidot SJ, Kloss F, Hertweck C, Lackner G. Deazaflavin metabolite produced by endosymbiotic bacteria controls fungal host reproduction. THE ISME JOURNAL 2024; 18:wrae074. [PMID: 38691425 PMCID: PMC11104420 DOI: 10.1093/ismejo/wrae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The endosymbiosis between the pathogenic fungus Rhizopus microsporus and the toxin-producing bacterium Mycetohabitans rhizoxinica represents a unique example of host control by an endosymbiont. Fungal sporulation strictly depends on the presence of endosymbionts as well as bacterially produced secondary metabolites. However, an influence of primary metabolites on host control remained unexplored. Recently, we discovered that M. rhizoxinica produces FO and 3PG-F420, a derivative of the specialized redox cofactor F420. Whether FO/3PG-F420 plays a role in the symbiosis has yet to be investigated. Here, we report that FO, the precursor of 3PG-F420, is essential to the establishment of a stable symbiosis. Bioinformatic analysis revealed that the genetic inventory to produce cofactor 3PG-F420 is conserved in the genomes of eight endofungal Mycetohabitans strains. By developing a CRISPR/Cas-assisted base editing strategy for M. rhizoxinica, we generated mutant strains deficient in 3PG-F420 (M. rhizoxinica ΔcofC) and in both FO and 3PG-F420 (M. rhizoxinica ΔfbiC). Co-culture experiments demonstrated that the sporulating phenotype of apo-symbiotic R. microsporus is maintained upon reinfection with wild-type M. rhizoxinica or M. rhizoxinica ΔcofC. In contrast, R. microsporus is unable to sporulate when co-cultivated with M. rhizoxinica ΔfbiC, even though the fungus was observed by super-resolution fluorescence microscopy to be successfully colonized. Genetic and chemical complementation of the FO deficiency of M. rhizoxinica ΔfbiC led to restoration of fungal sporulation, signifying that FO is indispensable for establishing a functional symbiosis. Even though FO is known for its light-harvesting properties, our data illustrate an important role of FO in inter-kingdom communication.
Collapse
Affiliation(s)
- Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Mahmudul Hasan
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Johannes W Kramer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Jana Krabbe
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - K Philip Wojtas
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, 3010 Melbourne, Victoria, Australia
| | - Sacha J Pidot
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, 3010 Melbourne, Victoria, Australia
| | - Florian Kloss
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Thuringia, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Thuringia, Germany
| | - Gerald Lackner
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326 Kulmbach, Bavaria, Germany
| |
Collapse
|
5
|
von Meijenfeldt FAB, Hogeweg P, Dutilh BE. A social niche breadth score reveals niche range strategies of generalists and specialists. Nat Ecol Evol 2023; 7:768-781. [PMID: 37012375 PMCID: PMC10172124 DOI: 10.1038/s41559-023-02027-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/27/2023] [Indexed: 04/05/2023]
Abstract
Generalists can survive in many environments, whereas specialists are restricted to a single environment. Although a classical concept in ecology, niche breadth has remained challenging to quantify for microorganisms because it depends on an objective definition of the environment. Here, by defining the environment of a microorganism as the community it resides in, we integrated information from over 22,000 environmental sequencing samples to derive a quantitative measure of the niche, which we call social niche breadth. At the level of genera, we explored niche range strategies throughout the prokaryotic tree of life. We found that social generalists include opportunists that stochastically dominate local communities, whereas social specialists are stable but low in abundance. Social generalists have a more diverse and open pan-genome than social specialists, but we found no global correlation between social niche breadth and genome size. Instead, we observed two distinct evolutionary strategies, whereby specialists have relatively small genomes in habitats with low local diversity, but relatively large genomes in habitats with high local diversity. Together, our analysis shines data-driven light on microbial niche range strategies.
Collapse
Affiliation(s)
- F A Bastiaan von Meijenfeldt
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands
| | - Paulien Hogeweg
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands.
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
6
|
Flavin-enabled reductive and oxidative epoxide ring opening reactions. Nat Commun 2022; 13:4896. [PMID: 35986005 PMCID: PMC9391479 DOI: 10.1038/s41467-022-32641-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/08/2022] [Indexed: 12/23/2022] Open
Abstract
Epoxide ring opening reactions are common and important in both biological processes and synthetic applications and can be catalyzed in a non-redox manner by epoxide hydrolases or reductively by oxidoreductases. Here we report that fluostatins (FSTs), a family of atypical angucyclines with a benzofluorene core, can undergo nonenzyme-catalyzed epoxide ring opening reactions in the presence of flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (NADH). The 2,3-epoxide ring in FST C is shown to open reductively via a putative enol intermediate, or oxidatively via a peroxylated intermediate with molecular oxygen as the oxidant. These reactions lead to multiple products with different redox states that possess a single hydroxyl group at C-2, a 2,3-vicinal diol, a contracted five-membered A-ring, or an expanded seven-membered A-ring. Similar reactions also take place in both natural products and other organic compounds harboring an epoxide adjacent to a carbonyl group that is conjugated to an aromatic moiety. Our findings extend the repertoire of known flavin chemistry that may provide new and useful tools for organic synthesis. Epoxide ring opening reactions are important in both biological processes and synthetic applications. Here, the authors show that flavin cofactors can catalyze reductive and oxidative epoxide ring opening reactions and propose the underlying mechanisms.
Collapse
|
7
|
Last D, Hasan M, Rothenburger L, Braga D, Lackner G. High-yield production of coenzyme F 420 in Escherichia coli by fluorescence-based screening of multi-dimensional gene expression space. Metab Eng 2022; 73:158-167. [PMID: 35863619 DOI: 10.1016/j.ymben.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
Coenzyme F420 is involved in bioprocesses such as biosynthesis of antibiotics by streptomycetes, prodrug activation in Mycobacterium tuberculosis, and methanogenesis in archaea. F420-dependent enzymes also attract interest as biocatalysts in organic chemistry. However, as only low F420 levels are produced in microorganisms, F420 availability is a serious bottleneck for research and application. Recent advances in our understanding of the F420 biosynthesis enabled heterologous overproduction of F420 in Escherichia coli, but the yields remained moderate. To address this issue, we rationally designed a synthetic operon for F420 biosynthesis in E. coli. However, it still led to the production of low amounts of F420 and undesired side-products. In order to strongly improve yield and purity, a screening approach was chosen to interrogate the gene expression-space of a combinatorial library based on diversified promotors and ribosome binding sites. The whole pathway was encoded by a two-operon construct. The first module ("core") addressed parts of the riboflavin biosynthesis pathway and FO synthase for the conversion of GTP to the stable F420 intermediate FO. The enzymes of the second module ("decoration") were chosen to turn FO into F420. The final construct included variations of T7 promoter strengths and ribosome binding site activity to vary the expression ratio for the eight genes involved in the pathway. Fluorescence-activated cell sorting was used to isolate clones of this library displaying strong F420-derived fluorescence. This approach yielded the highest titer of coenzyme F420 produced in the widely used organism E. coli so far. Production in standard LB medium offers a highly effective and simple production process that will facilitate basic research into unexplored F420-dependent bioprocesses as well as applications of F420-dependent enzymes in biocatalysis.
Collapse
Affiliation(s)
- Daniel Last
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Mahmudul Hasan
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Linda Rothenburger
- Core Facility Flow Cytometry, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
| | - Daniel Braga
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Gerald Lackner
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany.
| |
Collapse
|