1
|
Chen Y, Sun Y, Luo Z, Chen X, Wang Y, Qi B, Lin J, Lin WW, Sun C, Zhou Y, Huang J, Xu Y, Chen J, Chen S. Exercise Modifies the Transcriptional Regulatory Features of Monocytes in Alzheimer's Patients: A Multi-Omics Integration Analysis Based on Single Cell Technology. Front Aging Neurosci 2022; 14:881488. [PMID: 35592698 PMCID: PMC9110789 DOI: 10.3389/fnagi.2022.881488] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
Monocytes have been reported to be important mediators of the protective effect of exercise against the development of Alzheimer's disease (AD). This study aims explored the mechanism by which monocytes achieve this. Using single cell transcriptome analysis, results showed that CD14 + and CD16 + monocytes interacted with other cells in the circulating blood. TNF, CCR1, APP, and AREG, the key ligand-receptor-related genes, were found to be differentially expressed between exercise-treated and AD patients. The SCENIC analysis was performed to identify individual clusters of the key transcription factors (TFs). Nine clusters (M1-M9) were obtained from the co-expression network. Among the identified TFs, MAFB, HES4, and FOSL1 were found to be differentially expressed in AD. Moreover, the M4 cluster to which MAFB, HES4, and FOSL1 belonged was defined as the signature cluster for AD phenotype. Differential analysis by bulkRNA-seq revealed that the expression of TNF, CCR1, and APP were all upregulated after exercise (p < 0.05). And ATF3, MAFB, HES4, and KLF4 that were identified in M4 clusters may be the TFs that regulate TNF, CCR1, and APP in exercise prescription. After that, APP, CCR1, TNF, ATF3, KLF4, HES4, and MAFB formed a regulatory network in the ERADMT gene set, and all of them were mechanistically linked. The ERADMT gene set has been found to be a potential risk marker for the development of AD and can be used as an indicator of compliance to exercise therapy in AD patients. Using single-cell integration analysis, a network of exercise-regulating TFs in monocytes was constructed for AD disease. The constructed network reveals the mechanism by which exercise regulated monocytes to confer therapeutic benefits against AD and its complications. However, this study, as a bioinformatic research, requires further experimental validation.
Collapse
Affiliation(s)
- Yisheng Chen
- Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Huashan Hospital, Fudan University, Shanghai, China
| | | | - Yi Wang
- Huashan Hospital, Fudan University, Shanghai, China
| | - Beijie Qi
- Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Wei Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Yifan Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Ophthalmology, Putuo People’ s Hospital, Tongji University, Shanghai, China
| | - Jiebin Huang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Yuzhen Xu,
| | - Jiwu Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Jiwu Chen,
| | - Shiyi Chen
- Huashan Hospital, Fudan University, Shanghai, China
- Shiyi Chen,
| |
Collapse
|
2
|
He B, Li X, Yu H, Zhou Z. Therapeutic potential of umbilical cord blood cells for type 1 diabetes mellitus. J Diabetes 2015; 7:762-73. [PMID: 25799887 DOI: 10.1111/1753-0407.12286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/25/2015] [Accepted: 03/09/2015] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic disorder that results from autoimmune-mediated destruction of pancreatic islet β-cells. However, to date, no conventional intervention has successfully treated the disease. The optimal therapeutic method for T1DM should effectively control the autoimmunity, restore immune homeostasis, preserve residual β-cells, reverse β-cell destruction, and protect the regenerated insulin-producing cells against re-attack. Umbilical cord blood is rich in regulatory T (T(reg)) cells and multiple types of stem cells that exhibit immunomodulating potential and hold promise in their ability to restore peripheral tolerance towards pancreatic islet β-cells through remodeling of immune responses and suppression of autoreactive T cells. Recently, reinfusion of autologous umbilical cord blood or immune cells from cord blood has been proposed as a novel therapy for T1DM, with the advantages of no risk to the donors, minimal ethical concerns, a low incidence of graft-versus-host disease and easy accessibility. In this review, we revisit the role of autologous umbilical cord blood or immune cells from cord blood-based applications for the treatment of T1DM.
Collapse
Affiliation(s)
- Binbin He
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xia Li
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Haibo Yu
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguang Zhou
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
3
|
Hematopoietic stem and progenitor cell migration after hypofractionated radiation therapy in a murine model. Int J Radiat Oncol Biol Phys 2013; 87:1162-70. [PMID: 24113056 DOI: 10.1016/j.ijrobp.2013.08.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/16/2022]
Abstract
PURPOSE To characterize the recruitment of bone marrow (BM)-derived hematopoietic stem and progenitor cells (HSPCs) within tumor microenvironment after radiation therapy (RT) in a murine, heterotopic tumor model. METHODS AND MATERIALS Lewis lung carcinoma tumors were established in C57BL/6 mice and irradiated with 30 Gy given as 2 fractions over 2 days. Tumors were imaged with positron emission tomography/computed tomography (PET/CT) and measured daily with digital calipers. The HSPC and myelomonocytic cell content was assessed via immunofluorescent staining and flow cytometry. Functionality of tumor-associated HSPCs was verified in vitro using colony-forming cell assays and in vivo by rescuing lethally irradiated C57BL/6 recipients. RESULTS Irradiation significantly reduced tumor volumes and tumor regrowth rates compared with nonirradiated controls. The number of CD133(+) HSPCs present in irradiated tumors was higher than in nonirradiated tumors during all stages of regrowth. CD11b(+) counts were similar. PET/CT imaging and growth rate analysis based on standardized uptake value indicated that HSPC recruitment directly correlated to the extent of regrowth and intratumor cell activity after irradiation. The BM-derived tumor-associated HSPCs successfully formed hematopoietic colonies and engrafted irradiated mice. Finally, targeted treatment with a small animal radiation research platform demonstrated localized HSPC recruitment to defined tumor subsites exposed to radiation. CONCLUSIONS Hypofractionated irradiation resulted in a pronounced and targeted recruitment of BM-derived HSPCs, possibly as a mechanism to promote tumor regrowth. These data indicate for the first time that radiation therapy regulates HSPC content within regrowing tumors.
Collapse
|
4
|
Wnt1 Accelerates an Ex Vivo Expansion of Human Cord Blood CD34(+)CD38(-) Cells. Stem Cells Int 2013; 2013:909812. [PMID: 24023545 PMCID: PMC3760094 DOI: 10.1155/2013/909812] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 12/20/2022] Open
Abstract
Cord blood hematopoietic stem cells (CB-HSCs) transplantation has been increasing gradually with facing the limitation of insufficient quantity of HSCs in each CB unit. Therefore, efficient expansion methods which can maintain stem cell characteristics are needed. In this study, umbilical CB-CD34+ cells were cultured in two different cytokine cocktails: 4 factors (4F = Flt3-L, SCF, IL-6, and TPO) and 5 factors (5F = Wnt1 + 4F) in both serum and serum-free media. The data revealed that the best condition to accelerate an expansion of CD34+CD38− cells was serum-free culture condition supplemented with 5F (5F KSR). This condition yielded 24.3 ± 2.1 folds increase of CD34+CD38− cells. The expanded cells exhibited CD34+ CD38− CD133+ CD71low CD33low CD3− CD19− markers, expressed nanog, oct3/4, c-myc, and sox2 genes, and maintained differentiation potential into lymphoid, erythroid and myeloid lineages. The achievement of CD34+CD38− cells expansion may overcome an insufficient quantity of the cells leading to the improvement of the stem cell transplantation. Altogether, our findings highlight the role of Wnt1 and the new culture condition in stimulating hematopoietic stem/progenitor cells expansion which may offer a new therapeutic avenue for cord blood transplantation, regenerative medicine, stem cell bank applications, and other clinical applications in the future.
Collapse
|
5
|
Belkind-Gerson J, Carreon A, Benedict LA, Steiger C, Pieretti A, Nagy N, Dietrich J, Goldstein AM. Nestin-expressing cells in the gut give rise to enteric neurons and glial cells. Neurogastroenterol Motil 2013; 25:61-9.e7. [PMID: 22998406 PMCID: PMC3531577 DOI: 10.1111/nmo.12015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neuronal stem cells (NSCs) are promising for neurointestinal disease therapy. Although NSCs have been isolated from intestinal musclularis, their presence in mucosa has not been well described. Mucosa-derived NSCs are accessible endoscopically and could be used autologously. Brain-derived Nestin-positive NSCs are important in endogenous repair and plasticity. The aim was to isolate and characterize mucosa-derived NSCs, determine their relationship to Nestin-expressing cells and to demonstrate their capacity to produce neuroglial networks in vitro and in vivo. METHODS Neurospheres were generated from periventricular brain, colonic muscularis (Musc), and mucosa-submucosa (MSM) of mice expressing green fluorescent protein (GFP) controlled by the Nestin promoter (Nestin-GFP). Neuronal stem cells were also grown as adherent colonies from intestinal mucosal organoids. Their differentiation potential was assessed using immunohistochemistry using glial and neuronal markers. Brain and gut-derived neurospheres were transplanted into explants of chick embryonic aneural hindgut to determine their fate. KEY RESULTS Musc- and MSM-derived neurospheres expressed Nestin and gave rise to cells of neuronal, glial, and mesenchymal lineage. Although Nestin expression in tissue was mostly limited to glia co-labelled with glial fibrillary acid protein (GFAP), neurosphere-derived neurons and glia both expressed Nestin in vitro, suggesting that Nestin+/GFAP+ glial cells may give rise to new neurons. Moreover, following transplantation into aneural colon, brain- and gut-derived NSCs were able to differentiate into neurons. CONCLUSIONS & INFERENCES Nestin-expressing intestinal NSCs cells give rise to neurospheres, differentiate into neuronal, glial, and mesenchymal lineages in vitro, generate neurons in vivo and can be isolated from mucosa. Further studies are needed for exploring their potential for treating neuropathies.
Collapse
Affiliation(s)
- Jaime Belkind-Gerson
- Department of Pediatric Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Alfonso Carreon
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Instituto Nacional de Salud Publica, Cuernavaca, Mexico
| | - Leo Andrew Benedict
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Casey Steiger
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Alberto Pieretti
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Nandor Nagy
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest-1094, Hungary
| | - Jorg Dietrich
- Department of Neurology, Massachusetts General Hospital Cancer Center & Center for Regenerative Medicine, Harvard Medical School, Boston, MA
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|