1
|
Vanagas L, Muñoz D, Cristaldi C, Ganuza A, Nájera R, Bonardi MC, Turowski VR, Guzman F, Deng B, Kim K, Sullivan WJ, Angel SO. Histone variant H2B.Z acetylation is necessary for maintenance of Toxoplasma gondii biological fitness. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194943. [PMID: 37217032 PMCID: PMC10524646 DOI: 10.1016/j.bbagrm.2023.194943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants are important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). The c-Myc-A mutant displayed no phenotype over than a mild defect in its ability to kill mice. The c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. The c-Myc-R mutant was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that regulation of the N-terminal positive charge patch of H2B.Z is important for these processes. We also show that acetylated N-terminal H2B.Z interacts with some unique proteins compared to its unacetylated counterpart; the acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, suggesting a link between H2B.Z acetylation status and mitosis.
Collapse
Affiliation(s)
- Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina.
| | - Daniela Muñoz
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Constanza Cristaldi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Agustina Ganuza
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Rosario Nájera
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Mabel C Bonardi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina
| | - Valeria R Turowski
- Laboratorio de Bioquímica y Biología Celular de Parásitos, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA Chascomús, Prov. Buenos Aires, Argentina
| | - Fanny Guzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaiso, Av. Universidad 330 Curauma, Valparaiso, Chile
| | - Bin Deng
- Department of Biology and VBRN, University of Vermont, VT, USA
| | - Kami Kim
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - William J Sullivan
- Department of Pharmacology and Toxicology, Indiana School of Medicine, Indianapolis, IN 46202, USA
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, B7130IIWA, Chascomús, Prov. Buenos Aires, Argentina.
| |
Collapse
|
2
|
Vanagas L, Muñoz D, Cristaldi C, Ganuza A, Nájera R, Bonardi MC, Turowski VR, Guzman F, Deng B, Kim K, Sullivan WJ, Angel SO. Histone variant H2B.Z acetylation is necessary for maintenance of Toxoplasma gondii biological fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528480. [PMID: 36824796 PMCID: PMC9949044 DOI: 10.1101/2023.02.14.528480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants is important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). c-Myc-A mutant only displayed a mild effect in its ability to kill mice. c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. This mutant line was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that the N-terminal positive charge patch of H2B.Z is important for these procceses. Pull down assays with acetylated N-terminal H2B.Z peptide and unacetylated one retrieved common and differential interactors. Acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, opening the question of a possible link between H2B.Z acetylation status and mitosis.
Collapse
Affiliation(s)
- Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Daniela Muñoz
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Constanza Cristaldi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Agustina Ganuza
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Rosario Nájera
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Mabel C. Bonardi
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Valeria R. Turowski
- Laboratorio de Bioquímica y Biología Celular de Parásitos, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Fanny Guzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaiso. Av. Universidad 330 Curauma, Valparaiso
| | - Bin Deng
- Department of Biology and VBRN, University of Vermont, Vermont, USA
| | - Kami Kim
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - William J. Sullivan
- Department of Pharmacology and Toxicology, Indiana School of Medicine, Indianapolis, Indiana 46202, USA
| | - Sergio O. Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| |
Collapse
|
3
|
Domb K, Wang N, Hummel G, Liu C. Spatial Features and Functional Implications of Plant 3D Genome Organization. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:173-200. [PMID: 35130445 DOI: 10.1146/annurev-arplant-102720-022810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The advent of high-throughput sequencing-based methods for chromatin conformation, accessibility, and immunoprecipitation assays has been a turning point in 3D genomics. Altogether, these new tools have been pushing upward the interpretation of pioneer cytogenetic evidence for a higher order in chromatin packing. Here, we review the latest development in our understanding of plant spatial genome structures and different levels of organization and discuss their functional implications. Then, we spotlight the complexity of organellar (i.e., mitochondria and plastids) genomes and discuss their 3D packing into nucleoids. Finally, we propose unaddressed research axes to investigate functional links between chromatin-like dynamics and transcriptional regulation within organellar nucleoids.
Collapse
Affiliation(s)
- Katherine Domb
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| | - Nan Wang
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| | - Guillaume Hummel
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| |
Collapse
|
4
|
Singh A, Verma S, Modak SB, Chaturvedi MM, Purohit JS. Extra-nuclear histones: origin, significance and perspectives. Mol Cell Biochem 2022; 477:507-524. [PMID: 34796445 DOI: 10.1007/s11010-021-04300-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Histones are classically known to organize the eukaryotic DNA into chromatin. They are one of the key players in regulating transcriptionally permissive and non-permissive states of the chromatin. Nevertheless, their context-dependent appearance within the cytoplasm and systemic circulation has also been observed. The past decade has also witnessed few scientific communications on the existence of vesicle-associated histones. Diverse groups have attempted to determine the significance of these extra-nuclear histones so far, with many of those studies still underway. Of note amongst these are interactions of extra-nuclear or free histones with cellular membranes, mediated by mutual cationic and anionic natures, respectively. It is here aimed to consolidate the mechanism of formation of extra-nuclear histones; implications of histone-induced membrane destabilization and explore the mechanisms of their association/release with extracellular vesicles, along with the functional aspects of these extra-nuclear histones in cell and systemic physiology.
Collapse
Affiliation(s)
- Abhilasha Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Sudhir Verma
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, 110078, India
| | | | | | - Jogeswar S Purohit
- Department of Zoology, University of Delhi, Delhi, 110007, India.
- Molecular and Systems Biology Lab, Cluster Innovation Centre, University of Delhi, North Campus, DREAM Building, Delhi, 110007, India.
| |
Collapse
|
5
|
Major LA, Sauterer R. Demonstration of exogenous nuclear histone H3 binding to mitochondria and subsequent cytochrome c release in cauliflower. Cell Biol Int 2019; 43:1323-1329. [PMID: 31452299 DOI: 10.1002/cbin.11223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/22/2019] [Indexed: 11/06/2022]
Abstract
The life cycle of a cell is partly regulated by the programmed cell death (PCD) process. From development to demise, a cell's PCD process must respond to external signals and internal factors mediated by mitochondria. Previous studies show that the release of histones into the cytosol caused by DNA damage or loss of nuclear integrity is correlated with apoptosis in mammalian cells. These released histones bind to mitochondria and permeabilize its inner and outer membranes, which causes the release of cytochrome c into the cytosol that leads to caspase activation and the demise of the cell. Owing to the high conservation of histones, we hypothesize that histone-mediated cytochrome c release from mitochondria may be conserved across a wide range of eukaryotes. We investigated this histone-mitochondrial interaction in cauliflower using density-gradient purified mitochondria and exogenous histones from a crude histone fraction, then added the exogenous histone fractions to the purified cauliflower mitochondria and analyzed the mitochondrial pellets and supernatants by immunoblotting against cytochrome c and H3. Our data clearly shows that histone-enriched fractions elicited cytochrome c release from mitochondria, and that mitochondria bind exogenous histone H3.
Collapse
Affiliation(s)
- Linda A Major
- Department of Biology, School of Science, Jacksonville State University, 700 Pelham Road North, Jacksonville, AL, 36265, USA
| | - Roger Sauterer
- Department of Biology, School of Science, Jacksonville State University, 700 Pelham Road North, Jacksonville, AL, 36265, USA
| |
Collapse
|
6
|
Way L, Faktor J, Dvorakova P, Nicholson J, Vojtesek B, Graham D, Ball KL, Hupp T. Rearrangement of mitochondrial pyruvate dehydrogenase subunit dihydrolipoamide dehydrogenase protein-protein interactions by the MDM2 ligand nutlin-3. Proteomics 2017; 16:2327-44. [PMID: 27273042 PMCID: PMC5026170 DOI: 10.1002/pmic.201500501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 04/27/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022]
Abstract
Drugs targeting MDM2's hydrophobic pocket activate p53. However, these agents act allosterically and have agonist effects on MDM2's protein interaction landscape. Dominant p53‐independent MDM2‐drug responsive‐binding proteins have not been stratified. We used as a variable the differential expression of MDM2 protein as a function of cell density to identify Nutlin‐3 responsive MDM2‐binding proteins that are perturbed independent of cell density using SWATH‐MS. Dihydrolipoamide dehydrogenase, the E3 subunit of the mitochondrial pyruvate dehydrogenase complex, was one of two Nutlin‐3 perturbed proteins identified fours hour posttreatment at two cell densities. Immunoblotting confirmed that dihydrolipoamide dehydrogenase was induced by Nutlin‐3. Depletion of MDM2 using siRNA also elevated dihydrolipoamide dehydrogenase in Nutlin‐3 treated cells. Mitotracker confirmed that Nutlin‐3 inhibits mitochondrial activity. Enrichment of mitochondria using TOM22+ immunobeads and TMT labeling defined key changes in the mitochondrial proteome after Nutlin‐3 treatment. Proximity ligation identified rearrangements of cellular protein–protein complexes in situ. In response to Nutlin‐3, a reduction of dihydrolipoamide dehydrogenase/dihydrolipoamide acetyltransferase protein complexes highlighted a disruption of the pyruvate dehydrogenase complex. This coincides with an increase in MDM2/dihydrolipoamide dehydrogenase complexes in the nucleus that was further enhanced by the nuclear export inhibitor Leptomycin B. The data suggest one therapeutic impact of MDM2 drugs might be on the early perturbation of specific protein–protein interactions within the mitochondria. This methodology forms a blueprint for biomarker discovery that can identify rearrangements of MDM2 protein–protein complexes in drug‐treated cells.
Collapse
Affiliation(s)
- Luke Way
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jakub Faktor
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petra Dvorakova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Judith Nicholson
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Borek Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Duncan Graham
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Kathryn L Ball
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ted Hupp
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK. .,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| |
Collapse
|
7
|
Rao RSP, Salvato F, Thal B, Eubel H, Thelen JJ, Møller IM. The proteome of higher plant mitochondria. Mitochondrion 2016; 33:22-37. [PMID: 27405097 DOI: 10.1016/j.mito.2016.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 11/26/2022]
Abstract
Plant mitochondria perform a wide range of functions in the plant cell ranging from providing energy and metabolic intermediates, via coenzyme biosynthesis and their own biogenesis to retrograde signaling and programmed cell death. To perform these functions, they contain a proteome of >2000 different proteins expressed in some cells under some conditions. The vast majority of these proteins are imported, in many cases by a dedicated protein import machinery. Recent proteomic studies have identified about 1000 different proteins in both Arabidopsis and potato mitochondria, but even for energy-related proteins, the most well-studied functional protein group in mitochondria, <75% of the proteins are recognized as mitochondrial by even one of six of the most widely used prediction algorithms. The mitochondrial proteomes contain proteins representing a wide range of different functions. Some protein groups, like energy-related proteins, membrane transporters, and de novo fatty acid synthesis, appear to be well covered by the proteome, while others like RNA metabolism appear to be poorly covered possibly because of low abundance. The proteomic studies have improved our understanding of basic mitochondrial functions, have led to the discovery of new mitochondrial metabolic pathways and are helping us towards appreciating the dynamic role of the mitochondria in the responses of the plant cell to biotic and abiotic stress.
Collapse
Affiliation(s)
- R S P Rao
- Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University, Mangalore 575018, India
| | - F Salvato
- Institute of Biology, Department of Plant Biology, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas CEP: 13083-970, São Paulo, Brazil
| | - B Thal
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, DE-30419 Hannover, Germany
| | - H Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, DE-30419 Hannover, Germany
| | - J J Thelen
- Department of Biochemistry, University of Missouri-Columbia, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - I M Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark.
| |
Collapse
|
8
|
Matsuda S, Adachi J, Ihara M, Tanuma N, Shima H, Kakizuka A, Ikura M, Ikura T, Matsuda T. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor. Nucleic Acids Res 2016; 44:636-47. [PMID: 26405201 PMCID: PMC4737187 DOI: 10.1093/nar/gkv967] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/13/2015] [Accepted: 09/15/2015] [Indexed: 11/15/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) and pyruvate dehydrogenase complex (PDC) regulate production of acetyl-CoA, which functions as an acetyl donor in diverse enzymatic reactions, including histone acetylation. However, the mechanism by which the acetyl-CoA required for histone acetylation is ensured in a gene context-dependent manner is not clear. Here we show that PKM2, the E2 subunit of PDC and histone acetyltransferase p300 constitute a complex on chromatin with arylhydrocarbon receptor (AhR), a transcription factor associated with xenobiotic metabolism. All of these factors are recruited to the enhancer of AhR-target genes, in an AhR-dependent manner. PKM2 contributes to enhancement of transcription of cytochrome P450 1A1 (CYP1A1), an AhR-target gene, acetylation at lysine 9 of histone H3 at the CYP1A1 enhancer. Site-directed mutagenesis of PKM2 indicates that this enhancement of histone acetylation requires the pyruvate kinase activity of the enzyme. Furthermore, we reveal that PDC activity is present in nuclei. Based on these findings, we propose a local acetyl-CoA production system in which PKM2 and PDC locally supply acetyl-CoA to p300 from abundant PEP for histone acetylation at the gene enhancer, and our data suggest that PKM2 sensitizes AhR-mediated detoxification in actively proliferating cells such as cancer and fetal cells.
Collapse
Affiliation(s)
- Shun Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Shiga 520-0811, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka 567-0085, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Kyoto University, Shiga 520-0811, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi 981-1293, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi 981-1293, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Masae Ikura
- Laboratory of Chromatin Regulatory Network, Department of Mutagenesis, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Ikura
- Laboratory of Chromatin Regulatory Network, Department of Mutagenesis, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Shiga 520-0811, Japan
| |
Collapse
|
9
|
Mitochondrial function and mitochondrial DNA maintenance with advancing age. Biogerontology 2014; 15:417-38. [PMID: 25015781 DOI: 10.1007/s10522-014-9515-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/01/2014] [Indexed: 12/24/2022]
Abstract
We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity.
Collapse
|
10
|
Salvato F, Havelund JF, Chen M, Rao RSP, Rogowska-Wrzesinska A, Jensen ON, Gang DR, Thelen JJ, Møller IM. The potato tuber mitochondrial proteome. PLANT PHYSIOLOGY 2014; 164:637-53. [PMID: 24351685 PMCID: PMC3912095 DOI: 10.1104/pp.113.229054] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/16/2013] [Indexed: 05/17/2023]
Abstract
Mitochondria are called the powerhouses of the cell. To better understand the role of mitochondria in maintaining and regulating metabolism in storage tissues, highly purified mitochondria were isolated from dormant potato tubers (Solanum tuberosum 'Folva') and their proteome investigated. Proteins were resolved by one-dimensional gel electrophoresis, and tryptic peptides were extracted from gel slices and analyzed by liquid chromatography-tandem mass spectrometry using an Orbitrap XL. Using four different search programs, a total of 1,060 nonredundant proteins were identified in a quantitative manner using normalized spectral counts including as many as 5-fold more "extreme" proteins (low mass, high isoelectric point, hydrophobic) than previous mitochondrial proteome studies. We estimate that this compendium of proteins represents a high coverage of the potato tuber mitochondrial proteome (possibly as high as 85%). The dynamic range of protein expression spanned 1,800-fold and included nearly all components of the electron transport chain, tricarboxylic acid cycle, and protein import apparatus. Additionally, we identified 71 pentatricopeptide repeat proteins, 29 membrane carriers/transporters, a number of new proteins involved in coenzyme biosynthesis and iron metabolism, the pyruvate dehydrogenase kinase, and a type 2C protein phosphatase that may catalyze the dephosphorylation of the pyruvate dehydrogenase complex. Systematic analysis of prominent posttranslational modifications revealed that more than 50% of the identified proteins harbor at least one modification. The most prominently observed class of posttranslational modifications was oxidative modifications. This study reveals approximately 500 new or previously unconfirmed plant mitochondrial proteins and outlines a facile strategy for unbiased, near-comprehensive identification of mitochondrial proteins and their modified forms.
Collapse
Affiliation(s)
| | - Jesper F. Havelund
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - Mingjie Chen
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - R. Shyama Prasad Rao
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - Ole N. Jensen
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - David R. Gang
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | - Jay J. Thelen
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211 (F.S., M.C., R.S.P.R., J.J.T.)
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-4200 Slagelse, Denmark (J.F.H., I.M.M.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark (J.F.H., A.R.-W., O.N.J.); and
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (D.R.G.)
| | | |
Collapse
|
11
|
Gualberto JM, Mileshina D, Wallet C, Niazi AK, Weber-Lotfi F, Dietrich A. The plant mitochondrial genome: dynamics and maintenance. Biochimie 2013; 100:107-20. [PMID: 24075874 DOI: 10.1016/j.biochi.2013.09.016] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/17/2013] [Indexed: 12/21/2022]
Abstract
Plant mitochondria have a complex and peculiar genetic system. They have the largest genomes, as compared to organelles from other eukaryotic organisms. These can expand tremendously in some species, reaching the megabase range. Nevertheless, whichever the size, the gene content remains modest and restricted to a few polypeptides required for the biogenesis of the oxidative phosphorylation chain complexes, ribosomal proteins, transfer RNAs and ribosomal RNAs. The presence of autonomous plasmids of essentially unknown function further enhances the level of complexity. The physical organization of the plant mitochondrial DNA includes a set of sub-genomic forms resulting from homologous recombination between repeats, with a mixture of linear, circular and branched structures. This material is compacted into membrane-bound nucleoids, which are the inheritance units but also the centers of genome maintenance and expression. Recombination appears to be an essential characteristic of plant mitochondrial genetic processes, both in shaping and maintaining the genome. Under nuclear surveillance, recombination is also the basis for the generation of new mitotypes and is involved in the evolution of the mitochondrial DNA. In line with, or as a consequence of its complex physical organization, replication of the plant mitochondrial DNA is likely to occur through multiple mechanisms, potentially involving recombination processes. We give here a synthetic view of these aspects.
Collapse
Affiliation(s)
- José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Daria Mileshina
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Clémentine Wallet
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Adnan Khan Niazi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Frédérique Weber-Lotfi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
12
|
Takusagawa M, Tamotsu S, Sakai A. Histone H3 is absent from organelle nucleoids in BY-2 cultured tobacco cells. Cell Biol Int 2013; 37:748-54. [PMID: 23505035 DOI: 10.1002/cbin.10091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/27/2013] [Indexed: 11/08/2022]
Abstract
The core histone proteins (H2A, H2B, H3 and H4) are nuclear-localised proteins that play a central role in the formation of nucleosome structure. They have long been considered to be absent from extra-nuclear, DNA-containing organelles; that is plastids and mitochondria. Recently, however, the targeting of core histone H3 to mitochondria, and the presence of nucleosome-like structures in mitochondrial nucleoids, were proposed in cauliflower and tobacco respectively. Thus, we examined whether histone H3 was present in plant organelles and participated in the organisation of nucleoid structure, using highly purified organelles and organelle nucleoids isolated from BY-2 cultured tobacco cells. Immunofluorescence microscopic observations and Western blotting analyses demonstrated that histone H3 was absent from organelles and organelle nucleoids, consistent with the historical hypothesis. Thus, the organisation of organelle nucleoids, including putative nucleosome-like repetitive structures, should be constructed and maintained without participation of histone H3.
Collapse
Affiliation(s)
- Mari Takusagawa
- Department of Biological Science and Environment, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | | | | |
Collapse
|
13
|
Lauciello L, Kappes B, Scapozza L, Perozzo R. Expression, purification and biochemical characterization of recombinant Ca-dependent protein kinase 2 of the malaria parasite Plasmodium falciparum. Protein Expr Purif 2013; 90:170-7. [PMID: 23792132 DOI: 10.1016/j.pep.2013.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/02/2013] [Accepted: 06/06/2013] [Indexed: 01/17/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are serine/threonine kinases that react in response to calcium which functions as a trigger for several mechanisms in plants and invertebrates, but not in mammals. Recent structural studies have defined the role of calcium in the activation of CDPKs and have elucidated the important structural changes caused by calcium in order to allow the kinase domain of CDPK to bind and phosphorylate the substrate. However, the role of autophosphorylation in CDPKs is still not fully understood. In Plasmodium falciparum, seven CDPKs have been identified by sequence comparison, and four of them have been characterized and assigned to play a role in parasite motility, gametogenesis and egress from red blood cells. Although PfCDPK2 was already discovered in 1997, little is known about this enzyme and its metabolic role. In this work, we have expressed and purified PfCDPK2 at high purity in its unphosphorylated form and characterized its biochemical properties. Moreover, propositions about putative substrates in P. falciparum are made based on the analysis of the phosphorylation sites on the artificial substrate myelin basic protein (MBP).
Collapse
Affiliation(s)
- Leonardo Lauciello
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | | | | | | |
Collapse
|
14
|
Zhang F, Wang S, Gan L, Vosler PS, Gao Y, Zigmond MJ, Chen J. Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol 2011; 95:373-95. [PMID: 21930182 DOI: 10.1016/j.pneurobio.2011.09.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/29/2011] [Accepted: 09/01/2011] [Indexed: 12/13/2022]
Abstract
Silent information regulator two proteins (sirtuins or SIRTs) are a group of histone deacetylases whose activities are dependent on and regulated by nicotinamide adenine dinucleotide (NAD(+)). They suppress genome-wide transcription, yet upregulate a select set of proteins related to energy metabolism and pro-survival mechanisms, and therefore play a key role in the longevity effects elicited by calorie restriction. Recently, a neuroprotective effect of sirtuins has been reported for both acute and chronic neurological diseases. The focus of this review is to summarize the latest progress regarding the protective effects of sirtuins, with a focus on SIRT1. We first introduce the distribution of sirtuins in the brain and how their expression and activity are regulated. We then highlight their protective effects against common neurological disorders, such as cerebral ischemia, axonal injury, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Finally, we analyze the mechanisms underlying sirtuin-mediated neuroprotection, centering on their non-histone substrates such as DNA repair enzymes, protein kinases, transcription factors, and coactivators. Collectively, the information compiled here will serve as a comprehensive reference for the actions of sirtuins in the nervous system to date, and will hopefully help to design further experimental research and expand sirtuins as therapeutic targets in the future.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai 200032, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Bernadskaya YY, Patel FB, Hsu HT, Soto MC. Arp2/3 promotes junction formation and maintenance in the Caenorhabditis elegans intestine by regulating membrane association of apical proteins. Mol Biol Cell 2011; 22:2886-99. [PMID: 21697505 PMCID: PMC3154884 DOI: 10.1091/mbc.e10-10-0862] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has been proposed that Arp2/3, which promotes nucleation of branched actin, is needed for epithelial junction initiation but is less important as junctions mature. We focus here on how Arp2/3 contributes to the Caenorhabditis elegans intestinal epithelium and find important roles for Arp2/3 in the maturation and maintenance of junctions in embryos and adults. Electron microscope studies show that embryos depleted of Arp2/3 form apical actin-rich microvilli and electron-dense apical junctions. However, whereas apical/basal polarity initiates, apical maturation is defective, including decreased apical F-actin enrichment, aberrant lumen morphology, and reduced accumulation of some apical junctional proteins, including DLG-1. Depletion of Arp2/3 in adult animals leads to similar intestinal defects. The DLG-1/AJM-1 apical junction proteins, and the ezrin-radixin-moesin homologue ERM-1, a protein that connects F-actin to membranes, are required along with Arp2/3 for apical F-actin enrichment in embryos, whereas cadherin junction proteins are not. Arp2/3 affects the subcellular distribution of DLG-1 and ERM-1. Loss of Arp2/3 shifts both ERM-1 and DLG-1 from pellet fractions to supernatant fractions, suggesting a role for Arp2/3 in the distribution of membrane-associated proteins. Thus, Arp2/3 is required as junctions mature to maintain apical proteins associated with the correct membranes.
Collapse
Affiliation(s)
- Yelena Y Bernadskaya
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
16
|
Choi YS, Hoon Jeong J, Min HK, Jung HJ, Hwang D, Lee SW, Kim Pak Y. Shot-gun proteomic analysis of mitochondrial D-loop DNA binding proteins: identification of mitochondrial histones. MOLECULAR BIOSYSTEMS 2011; 7:1523-36. [DOI: 10.1039/c0mb00277a] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|