1
|
Zhang Y, Wang Y, Zuo Q, Wang X, Li D, Tang B, Li B. Selection of the Inducer for the Differentiation of Chicken Embryonic Stem Cells into Male Germ Cells In Vitro. PLoS One 2016; 11:e0164664. [PMID: 27741318 PMCID: PMC5065142 DOI: 10.1371/journal.pone.0164664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/28/2016] [Indexed: 01/10/2023] Open
Abstract
Several inducers have been used to differentiate embryonic stem cells (ESCs) into male germ cells but the induction process has been inefficient. To solve the problem of low efficiency of inducer for ESCs differentiation into male germ cells, all-trans retinoic acid (ATRA), Am80(the retinoic acid receptor agonist), and estradiol (E2) was used to induce ESCs to differentiate into male germ cells in vitro. ESCs were cultured in media containing ATRA, Am80, or E2 respectively which can differentiate ESCs into a germ cell lineage. In process of ATRA and Am80 induction Group, germ cell-like cells can be observed in 10 days; but have no in E2 induction Group. The marker genes of germ cell: Dazl, Stra8, C-kit, Cvh, integrinα6, and integrinβ1 all showed a significant up-regulation in the expression level. The ATRA-induction group showed high expression of C-kit and Cvh around 4 days, and integrinα6 and integrinβ1 were activated on day 10, respectively, while the E2-,Am80- induction group showed a high expression of C-kit as early as 4 days immunocytochemistry results shown that, integrinα6 and integrinβ1 could be detected in the ATRA-, Am80-, and E2-induction group, Positive clones in the ATRA group were greater in number than those in the other two groups. we conclued that ATRA, Am80, and E2 can promote the expression of the corresponding genes of germ cells, and had different effect on the differentiation of ESCs into male germ cells. ATRA was the most effective inducer of germ cell differentiation.
Collapse
Affiliation(s)
- Yani Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu province, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu province, China
| | - Yingjie Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu province, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu province, China
| | - Qisheng Zuo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu province, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu province, China
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu province, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu province, China
| | - Dong Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu province, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu province, China
| | - Beibei Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu province, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu province, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu province, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction, and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu province, China
| |
Collapse
|
2
|
Zeng F, Huang F, Guo J, Hu X, Liu C, Wang H. Emerging methods to generate artificial germ cells from stem cells. Biol Reprod 2015; 92:89. [PMID: 25715792 DOI: 10.1095/biolreprod.114.124800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/16/2015] [Indexed: 12/29/2022] Open
Abstract
Germ cells are responsible for the transmission of genetic and epigenetic information across generations. At present, the number of infertile couples is increasing worldwide; these infertility problems can be traced to environmental pollutions, infectious diseases, cancer, psychological or work-related stress, and other factors, such as lifestyle and genetics. Notably, lack of germ cells and germ cell loss present real obstacles in infertility treatment. Recent research aimed at producing gametes through artificial germ cell generation from stem cells may offer great hope for affected couples to treat infertility in the future. Therefore, this rapidly emerging area of artificial germ cell generation from nongermline cells has gained considerable attention from basic and clinical research in the fields of stem cell biology, developmental biology, and reproductive biology. Here, we review the state of the art in artificial germ cell generation.
Collapse
Affiliation(s)
- Fanhui Zeng
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Fajun Huang
- School of Medical Science, Hubei University for Nationalities, Enshi, China
| | - Jingjing Guo
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xingchang Hu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Changbai Liu
- The Institute of Molecular Biology, China Three Gorges University, Yichang, China
| | - Hu Wang
- Medical School, China Three Gorges University, Yichang, China
| |
Collapse
|
3
|
Riesco MF, Valcarce DG, Alfonso J, Herráez MP, Robles V. In vitro generation of zebrafish PGC-like cells. Biol Reprod 2014; 91:114. [PMID: 25253737 DOI: 10.1095/biolreprod.114.121491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The possibility of generating primordial germ cells (PGCs) in vitro from noncommitted embryonic cells represents an extremely useful tool in current research. Primordial germ cell in vitro differentiation has been successfully reported in mammals. However, contrary to fish, PGC specification in mammals is an inductive mechanism. This study is the first to date to describe a rapid method for PGC in vitro differentiation in teleosts. Primordial germ cell-like cells were characterized by several lines of evidence, including gene expression, cell complexity, size, and image analysis for the quantification of fluorescence under vasa promoter. Moreover, differentiated cells were able to colonize the genital ridge after transplantation. Differentiation treatments increased the number of PGCs in culture, causing differentiation of cells rather than inducing their proliferation. These results open up the possibility of differentiating genetically modified embryonic cells to PGC-like cells to ensure their transmission to the progeny and could be crucial for an in-depth understanding of germline differentiation in teleosts.
Collapse
Affiliation(s)
- Marta F Riesco
- Department of Molecular Biology and Cell Biology Area, University of León, León, Spain
| | - David G Valcarce
- Department of Molecular Biology and Cell Biology Area, University of León, León, Spain
| | - Javier Alfonso
- Department of Mechanical, Computing, and Aerospace Engineering, University of León, León, Spain
| | - M Paz Herráez
- Department of Molecular Biology and Cell Biology Area, University of León, León, Spain
| | - Vanesa Robles
- Department of Molecular Biology and Cell Biology Area, University of León, León, Spain
| |
Collapse
|
4
|
Shi QQ, Sun M, Zhang ZT, Zhang YN, Elsayed AK, Zhang L, Huang XM, Li BC. A screen of suitable inducers for germline differentiation of chicken embryonic stem cells. Anim Reprod Sci 2014; 147:74-85. [PMID: 24786547 DOI: 10.1016/j.anireprosci.2014.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/26/2014] [Accepted: 04/06/2014] [Indexed: 11/28/2022]
Abstract
Differentiation of germ cells from embryonic stem cells in vitro could have great application for treating infertility and provide an excellent model for uncovering molecular mechanisms of germline generation. In this study, we aim to screen the suitable inducers that may prove the efficiency of driving chicken embryonic stem cells (ES cells) toward germ cells. The male ES cells were separeted into different groups: single retinoic acid (RA) treatment, co-cultured with sertoli cell feeder with RA induction, cultured on matrix proteins (fibronectin, laminin and collagen) with RA treatment, cultured on fibronectin with sertoli cell feeder and RA induction, and single bone morphogenetic protein 4 (BMP4) treatment. Quantitative RT-PCR and immunoourescence were performed to characterize the ES cells differentiation process. The results showed that spermatogonial stem cells (SSCs)-like were not detected in single RA and RA with collagen groups, but were observed in the other groups. The expression of ES specific genes (Nanog and Sox2) was decreased while SSCs marker genes (Dazl, Stra8, integrin α6, integrinβ1 and C-kit) was remarkably increased. The multiple comparsion results showed that the expression of SSCs marker genes in RA with sertoli cells group was significantly higher than the other groups(P<0.05). Collectively, our results suggested that chicken ES cells possess the potency to differentiate into SSCs-like cells in vitro through RA, matrix proteins, sertoli cells and BMP4 induction, of which co-cultured with sertoli cell feeder with RA induction was proved to be the best.
Collapse
Affiliation(s)
- Qing-Qing Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Min Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Zhen-Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Ya-Ni Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Ahmed Kamel Elsayed
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Suez Canal University, Ismailia 41522, Egypt.
| | - Lei Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Xiao-Mei Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Bi-Chun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| |
Collapse
|
5
|
Imamura M, Hikabe O, Lin ZYC, Okano H. Generation of germ cells in vitro in the era of induced pluripotent stem cells. Mol Reprod Dev 2013; 81:2-19. [PMID: 23996404 DOI: 10.1002/mrd.22259] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 08/21/2013] [Indexed: 01/15/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are stem cells that can be artificially generated via "cellular reprogramming" using gene transduction in somatic cells. iPSCs have enormous potential in stem-cell biology as they can give rise to numerous cell lineages, including the three germ layers. An evaluation of germ-line competency by blastocyst injection or tetraploid complementation, however, is critical for determining the developmental potential of mouse iPSCs towards germ cells. Recent studies have demonstrated that primordial germ cells obtained by the in vitro differentiation of iPSCs produce functional gametes as well as healthy offspring. These findings illustrate not only that iPSCs are developmentally similar to embryonic stem cells (ESCs), but also that somatic cells from adult tissues can produce gametes in vitro, that is, if they are reprogrammed into iPSCs. In this review, we discuss past and recent advances in the in vitro differentiation of germ cells using pluripotent stem cells, with an emphasis on ESCs and iPSCs. While this field of research is still at a stage of infancy, it holds great promises for investigating the mechanisms of germ-cell development, especially in humans, and for advancing reproductive and developmental engineering technologies in the future.
Collapse
Affiliation(s)
- Masanori Imamura
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
6
|
Qiu P, Bai Y, Pan S, Li W, Liu W, Hua J. Gender depended potentiality of differentiation of human umbilical cord mesenchymal stem cells into oocyte-Like cells in vitro. Cell Biochem Funct 2013; 31:365-73. [DOI: 10.1002/cbf.2981] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Pubin Qiu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling; Shaanxi; China
| | - Yaofu Bai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling; Shaanxi; China
| | - Shaohui Pan
- North Branch Bio-Technology Co.; Ltd of Anhui Province; Wuhu; Anhui; China
| | - Wei Li
- North Branch Bio-Technology Co.; Ltd of Anhui Province; Wuhu; Anhui; China
| | - Weishuai Liu
- Yangling Demonstration Zone Hospital Pathology Department; Yangling; China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling; Shaanxi; China
| |
Collapse
|