1
|
Giannetti A, Pantalone A, Antonucci I, Verna S, Di Gregorio P, Stuppia L, Calvisi V, Buda R, Salini V. The Role of Platelet-Rich Plasma on the Chondrogenic and Osteogenic Differentiation of Human Amniotic-Fluid-Derived Stem Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15786. [PMID: 36497861 PMCID: PMC9738099 DOI: 10.3390/ijerph192315786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Amniotic fluid represents a new and promising source of engraftable stem cells. The purpose of this study was to investigate the in vitro effects of platelet-rich plasma (PRP) on amniotic-fluid-derived stem cells (AFSCs) on chondrogenic or osteogenic differentiation potential. Amniotic fluid samples were obtained from women undergoing amniocentesis for prenatal diagnosis at 16-18 weeks of pregnancy. Undifferentiated human AFSCs were cocultured with PRP for 14 days. The study includes two protocols investigating the effects of activated PRP using two different methods: via freeze-thaw cycles and via the addition of calcium gluconate. On the 14th day of culturing, the differentiation potential of the cocultured AFSCs was then compared with undifferentiated AFSCs. Staining with alcian blue solution (ABS) and alizarine red solution (ARS) was performed, and chondrogenic- and osteogenic-associated genes markers were investigated. ABS demonstrated enhanced glycosaminoglycan expression. Cocultured cells expressed chondrocyte-associated genes, determined by real-time polymerase chain reaction (RT-PCR), including type I collagen, type II collagen, COMP, and aggrecan. In regard to the osteogenic markers, osteopontin and bone sialoprotein, there were no changes. In particular, the activation of PRP using the freeze-thaw cycle protocol showed a higher expression of the chondrogenic markers. Our preliminary in vitro results showed that PRP has good potential in the chondrogenic differentiation of AFSCs.
Collapse
Affiliation(s)
- Alessio Giannetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrea Pantalone
- Clinic of Orthopaedics and Traumatology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
| | - Ivana Antonucci
- Center of Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Sandra Verna
- Immunohematology and Transfusional Medicine Service, “SS. Annunziata” Hospital, 66100 Chieti, Italy
| | - Patrizia Di Gregorio
- Immunohematology and Transfusional Medicine Service, “SS. Annunziata” Hospital, 66100 Chieti, Italy
| | - Liborio Stuppia
- Center of Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vittorio Calvisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Roberto Buda
- Clinic of Orthopaedics and Traumatology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo Salini
- Department of Orthopaedics and Traumatology, San Raffaele Hospital, 20132 Milan, Italy
| |
Collapse
|
2
|
Sargaiyan V, Manas A, Hemanth Kumar HR, Saravanan M, Ghiaz K, Deepalakshmi S. The role of prp in third molar extraction wounds: A clinical study. J Pharm Bioallied Sci 2022; 14:S855-S858. [PMID: 36110662 PMCID: PMC9469241 DOI: 10.4103/jpbs.jpbs_24_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/26/2022] [Indexed: 11/04/2022] Open
|
3
|
Tissue Engineering and Regenerative Medicine in Craniofacial Reconstruction and Facial Aesthetics. J Craniofac Surg 2020; 31:15-27. [PMID: 31369496 DOI: 10.1097/scs.0000000000005840] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The craniofacial region is anatomically complex and is of critical functional and cosmetic importance, making reconstruction challenging. The limitations of current surgical options highlight the importance of developing new strategies to restore the form, function, and esthetics of missing or damaged soft tissue and skeletal tissue in the face and cranium. Regenerative medicine (RM) is an expanding field which combines the principles of tissue engineering (TE) and self-healing in the regeneration of cells, tissues, and organs, to restore their impaired function. RM offers many advantages over current treatments as tissue can be engineered for specific defects, using an unlimited supply of bioengineered resources, and does not require immunosuppression. In the craniofacial region, TE and RM are being increasingly used in preclinical and clinical studies to reconstruct bone, cartilage, soft tissue, nerves, and blood vessels. This review outlines the current progress that has been made toward the engineering of these tissues for craniofacial reconstruction and facial esthetics.
Collapse
|
4
|
Bageshlooyafshar B, Vakilian S, Kehtari M, Eslami-Arshaghi T, Rafeie F, Ramezanifard R, Rahchamani R, Mohammadi-Sangcheshmeh A, Mostafaloo Y, Seyedjafari E. Zinc silicate mineral-coated scaffold improved in vitro osteogenic differentiation of equine adipose-derived mesenchymal stem cells. Res Vet Sci 2019; 124:444-451. [DOI: 10.1016/j.rvsc.2017.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 08/09/2017] [Accepted: 09/14/2017] [Indexed: 01/30/2023]
|
5
|
Scully D, Naseem KM, Matsakas A. Platelet biology in regenerative medicine of skeletal muscle. Acta Physiol (Oxf) 2018; 223:e13071. [PMID: 29633517 DOI: 10.1111/apha.13071] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/07/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
Abstract
Platelet-based applications such as platelet-rich plasma (PRP) and platelet releasate have gained unprecedented attention in regenerative medicine across a variety of tissues as of late. The rationale behind utilizing PRP originates in the delivery of key cytokines and growth factors from α-granules to the targeted area, which in turn act as cell cycle regulators and promote the healing process across a variety of tissues. The aim of the present review is to assimilate current experimental evidence on the role of platelets as biomaterials in tissue regeneration, particularly in skeletal muscle, by integrating findings from human, animal and cell studies. This review is composed of 3 parts: firstly, we review key aspects of platelet biology that precede the preparation and use of platelet-related applications for tissue regeneration. Secondly, we critically discuss relevant evidence on platelet-mediated regeneration in skeletal muscle focusing on findings from (i) clinical trials, (ii) experimental animal studies and (iii) cell culture studies; and thirdly, we discuss the application of platelets in the regeneration of several other tissues including tendon, bone, liver, vessels and nerve. Finally, we review key technical variations in platelet preparation that may account for the large discrepancy in outcomes from different studies. This review provides an up-to-date reference tool for biomedical and clinical scientists involved in platelet-mediated tissue regenerative applications.
Collapse
Affiliation(s)
- D. Scully
- Molecular Physiology Laboratory; Centre for Atherothrombotic & Metabolic Disease; Hull York Medical School; University of Hull; Hull UK
| | - K. M. Naseem
- Leeds Institute of Cardiovascular and Metabolic Medicine; University of Leeds; Leeds UK
| | - A. Matsakas
- Molecular Physiology Laboratory; Centre for Atherothrombotic & Metabolic Disease; Hull York Medical School; University of Hull; Hull UK
| |
Collapse
|
6
|
Ding K, Liu WY, Zeng Q, Hou F, Xu JZ, Yang Z. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation. Exp Cell Res 2017; 352:84-94. [DOI: 10.1016/j.yexcr.2017.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/03/2017] [Accepted: 01/29/2017] [Indexed: 12/14/2022]
|
7
|
Fernandes G, Yang S. Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering. Bone Res 2016; 4:16036. [PMID: 28018706 PMCID: PMC5153571 DOI: 10.1038/boneres.2016.36] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022] Open
Abstract
Presently, there is a high paucity of bone grafts in the United States and worldwide. Regenerating bone is of prime concern due to the current demand of bone grafts and the increasing number of diseases causing bone loss. Autogenous bone is the present gold standard of bone regeneration. However, disadvantages like donor site morbidity and its decreased availability limit its use. Even allografts and synthetic grafting materials have their own limitations. As certain specific stem cells can be directed to differentiate into an osteoblastic lineage in the presence of growth factors (GFs), it makes stem cells the ideal agents for bone regeneration. Furthermore, platelet-rich plasma (PRP), which can be easily isolated from whole blood, is often used for bone regeneration, wound healing and bone defect repair. When stem cells are combined with PRP in the presence of GFs, they are able to promote osteogenesis. This review provides in-depth knowledge regarding the use of stem cells and PRP in vitro, in vivo and their application in clinical studies in the future.
Collapse
Affiliation(s)
- Gabriela Fernandes
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Department of Anatomy & Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Allen AB, Butts EB, Copland IB, Stevens HY, Guldberg RE. Human platelet lysate supplementation of mesenchymal stromal cell delivery: issues of xenogenicity and species variability. J Tissue Eng Regen Med 2016; 11:2876-2884. [PMID: 27339032 DOI: 10.1002/term.2191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 02/03/2016] [Accepted: 03/14/2016] [Indexed: 01/10/2023]
Abstract
Immunogenicity of fetal bovine serum (FBS) poses a problem for its use in the propagation of autologous mesenchymal stromal cells (MSCs) for cell therapy. Human platelet lysate (hPL), an enriched growth factor solution containing mitogenic and angiogenic cues, has potential utility in replacing FBS for human MSC (hMSC) delivery strategies. Despite its potentiation of hMSC number in vitro, little is known concerning its capacity to supplement implanted hMSC-seeded constructs and promote tissue regeneration in vivo. In this study, we tested the effects of incorporating hPL in cell-seeded constructs implanted subcutaneously into immunocompromised rats, investigated in vitro interactions between hPL and rat MSCs (rMSCs) and determined interspecies variability in the PL product [hPL vs rat PL (rPL)] and its effect on cultured MSCs (hPL/hMSCs vs rPL/rMSCs). The overarching aim was to determine the utility of hPL to foster MSC survival in preclinical rodent models. Exposure to hPL-supplemented media resulted in rMSC death, by a process attributable to heat-labile proteins, but not membrane attack complex formation. In the in vitro syngeneic model, the rodent product proved fundamentally distinct from the human product, with rPL having substantially lower growth factor content than hPL. Moreover, contrary to the positive effects of hPL on hMSC expansion, rPL did not reduce rMSC doubling time for the serum concentrations examined. When tested in vivo, hPL did not improve cell survival within hydrogel constructs through 2 weeks postimplantation. In summary, this study highlights the many facets of xenogenicity and interspecies variability that must be considered in the preclinical evaluation of hPL. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ashley B Allen
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Emily B Butts
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ian B Copland
- Department of Haematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hazel Y Stevens
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert E Guldberg
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
9
|
Batas L, Stavropoulos A, Papadimitriou S, Nyengaard JR, Konstantinidis A. Evaluation of autogenous PRGF+β-TCP with or without a collagen membrane on bone formation and implant osseointegration in large size bone defects. A preclinicalin vivostudy. Clin Oral Implants Res 2015; 27:981-7. [DOI: 10.1111/clr.12742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Leonidas Batas
- Department of Preventive Dentistry; Periodontology & Implant Biology; School of Dentistry; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Andreas Stavropoulos
- Department of Periodontology; Faculty of Odontology; Malmö University; Malmö Sweden
- Center for Experimental and Preclinical Biomedical Research (CEPBR); Athens Greece
| | - Serafim Papadimitriou
- Companion Animal Clinic; School of Veterinary Medicine; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Jens R. Nyengaard
- Stereology and Electron Microscopy; Institute for Clinical Medicine; Aarhus University; Aarhus Denmark
| | - Antonios Konstantinidis
- Department of Preventive Dentistry; Periodontology & Implant Biology; School of Dentistry; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
10
|
Oryan A, Alidadi S, Moshiri A. Platelet-rich plasma for bone healing and regeneration. Expert Opin Biol Ther 2015; 16:213-32. [DOI: 10.1517/14712598.2016.1118458] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
ZHONG DA, WANG CHENGGONG, YIN KE, LIAO QIANDE, ZHOU XING, LIU ANSONG, KONG LINGYU. In vivo ossification of a scaffold combining β-tricalcium phosphate and platelet-rich plasma. Exp Ther Med 2014; 8:1381-1388. [PMID: 25289027 PMCID: PMC4186334 DOI: 10.3892/etm.2014.1969] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/11/2014] [Indexed: 11/24/2022] Open
Abstract
Tricalcium phosphate (TCP) and platelet-rich plasma (PRP) are commonly used in bone tissue engineering. The aim of the present study was to investigate a composite that combined TCP with PRP and assess its effectiveness in the treatment of bone defects. Cavity-shaped bone defects were established on the tibiae of 27 beagle dogs, and were repaired by pure β-TCP with bone marrow stromal cells (BMSCs), β-TCP/PRP with BMSCs and autogenic ilium. The samples were harvested at 4, 8 and 12 weeks, and bone regeneration was evaluated using X-ray radiography, immunocytochemical staining of osteocalcin (OCN), hematoxylin and eosin staining and reverse transcription-polymerase chain reaction analyses. Biomechanical tests of the scaffolds were performed at the 12th week after scaffold implantation. When using pure β-TCP as a scaffold, the scaffold-bone interface was clear and no material adsorption and bone healing was observed. Substantial bone regeneration was observed when the tibial defects were restored using β-TCP/PRP and autogenic ilium. Furthermore, the mRNA expression levels of OCN, alkaline phosphatase and collagen type I α1 were significantly higher in the animals with β-TCP/PRP scaffolds at 8 and 12 weeks following implantation compared with those in the animals with the pure β-TCP scaffolds. The maximum load and compressive strength of the β-TCP/PRP scaffolds were similar to those of the autogenic ilium; however, they were significantly higher than those of the pure β-TCP scaffold. Thus, the β-TCP/PRP composite may be used as a potential scaffold to carry in vitro cultured BMSCs to treat bone defects.
Collapse
Affiliation(s)
- DA ZHONG
- Correspondence to: Dr Da Zhong, Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, P.R. China, E-mail:
| | | | | | | | | | | | | |
Collapse
|
12
|
WANG CHENGGONG, ZHONG DA, ZHOU XING, YIN KE, LIAO QIANDE, KONG LINGYU, LIU ANSONG. Preparation of a new composite combining strengthened β-tricalcium phosphate with platelet-rich plasma as a potential scaffold for the repair of bone defects. Exp Ther Med 2014; 8:1081-1086. [PMID: 25187800 PMCID: PMC4151786 DOI: 10.3892/etm.2014.1912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/18/2014] [Indexed: 01/25/2023] Open
Abstract
β-tricalcium phosphate (β-TCP) and platelet-rich plasma (PRP) are commonly used in bone tissue engineering. In the present study, a new composite combining strengthened β-TCP and PRP was prepared and its morphological and mechanical properties were investigated by scanning electron microscopy (SEM) and material testing. The biocompatibility was evaluated by measuring the adhesion rate and cytotoxicity of bone marrow stromal cells (BMSCs). The strengthened β-TCP/PRP composite had an appearance like the fungus Boletus kermesinus with the PRP gel distributed on the surface of the micropores. The maximum load and load intensity were 945.6±86.4 N and 13.1±0.5 MPa, which were significantly higher than those of β-TCP (110.1±14.3 N and 1.6±0.2 MPa; P<0.05). The BMSC adhesion rate on the strengthened β-TCP/PRP composite was >96% after 24 h, with a cell cytotoxicity value of zero. SEM micrographs revealed that following seeding of BMSCs onto the composite in high-glucose Dulbecco's modified Eagle's medium culture for two weeks, the cells grew well and exhibited fusiform, spherical and polygonal morphologies, as well as pseudopodial connections. The strengthened β-TCP/PRP composite has the potential to be used as a scaffold in bone tissue engineering due to its effective biocompatibility and mechanical properties.
Collapse
Affiliation(s)
| | - DA ZHONG
- Correspondence to: Dr Da Zhong, Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, P.R. China, E-mail:
| | | | | | | | | | | |
Collapse
|
13
|
Bone regeneration of mouse critical-sized calvarial defects with human mesenchymal stem cells in scaffold. Lab Anim Res 2013; 29:196-203. [PMID: 24396384 PMCID: PMC3879338 DOI: 10.5625/lar.2013.29.4.196] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/13/2013] [Accepted: 10/11/2013] [Indexed: 01/29/2023] Open
Abstract
Combination of tissue engineering and cell therapy represents a promising approach for bone regeneration. Human mesenchymal stem cells (hMSCs) have properties that include low immunogenicity, high proliferation rate, and multi-differentiation potential; therefore, they are an attractive seeding source for tissue engineering therapy. Here we found that hMSCs with a scaffold did not affect cell viability and osteogenic differentiation. We also investigated regenerative effect of hMSCs with the scaffold in a calvarial bone defect model. Formation of new bone was evaluated by micro-CT, histology and expression of osteogenic markers. The results clearly showed interesting evidence indicating that hMSCs with scaffold increased the formation of new bone and expression of osteogenic markers, compared to the empty and scaffold only groups. Overall, our results suggest that hMSCs with scaffold are suitable for stimulation of intense bone regeneration in critical-sized bone defects.
Collapse
|