1
|
Luo J, Chen D, Mei Y, Li H, Qin B, Lin X, Chan TF, Lai KP, Kong D. Comparative transcriptome findings reveal the neuroinflammatory network and potential biomarkers to early detection of ischemic stroke. J Biol Eng 2023; 17:50. [PMID: 37533068 PMCID: PMC10398984 DOI: 10.1186/s13036-023-00362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/25/2023] [Indexed: 08/04/2023] Open
Abstract
INTRODUCTION Ischemic stroke accounts for 70-80% of all stroke cases, leading to over two million people dying every year. Poor diagnosis and late detection are the major causes of the high death and disability rate. METHODS In the present study, we used the middle cerebral artery occlusion (MCAO) rat model and applied comparative transcriptomic analysis, followed by a systematic advanced bioinformatic analysis, including gene ontology enrichment analysis and Ingenuity Pathway Analysis (IPA). We aimed to identify novel biomarkers for the early detection of ischemic stroke. In addition, we aimed to delineate the molecular mechanisms underlying the development of ischemic stroke, in which we hoped to identify novel therapeutic targets for treating ischemic stroke. RESULTS In the comparative transcriptomic analysis, we identified 2657 differentially expressed genes (DEGs) in the brain tissue of the MCAO model. The gene enrichment analysis highlighted the importance of these DEGs in oxygen regulation, neural functions, and inflammatory and immune responses. We identified the elevation of angiopoietin-2 and leptin receptor as potential novel biomarkers for early detection of ischemic stroke. Furthermore, the result of IPA suggested targeting the inflammasome pathway, integrin-linked kinase signaling pathway, and Th1 signaling pathway for treating ischemic stroke. CONCLUSION The results of the present study provide novel insight into the biomarkers and therapeutic targets as potential treatments of ischemic stroke.
Collapse
Affiliation(s)
- Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China.
| | - Dingzhi Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Yujia Mei
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Hepeng Li
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Biyun Qin
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Clinical Medicine Research Center, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, P. R. China.
| | - Deyan Kong
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Dadaxuedong Road, Nanning, Guangxi, 530007, People's Republic of China.
| |
Collapse
|
2
|
He L, Dang L, Zhou J, Bai J, Li YZ. Association of angiopoietin-1, angiopoietin-2 and caspase-5 polymorphisms with psoriasis vulgaris. Clin Exp Dermatol 2015; 40:556-63. [PMID: 25753570 DOI: 10.1111/ced.12550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2014] [Indexed: 11/30/2022]
Affiliation(s)
- L. He
- Department of Dermatology; Second Affiliated Hospital of Harbin Medical University; Harbin China
| | - L. Dang
- Department of Dermatology; Second Affiliated Hospital of Harbin Medical University; Harbin China
| | - J. Zhou
- Department of Dermatology; Second Affiliated Hospital of Harbin Medical University; Harbin China
| | - J. Bai
- Laboratory of Medical Genetics; Harbin Medical University; Harbin China
| | - Y.-Z. Li
- Department of Dermatology; Second Affiliated Hospital of Harbin Medical University; Harbin China
| |
Collapse
|
3
|
Chen J, Yu H, Sun K, Song W, Bai Y, Yang T, Song Y, Zhang Y, Hui R. Promoter variant of angiopoietin-2 and plasma angiopoietin-2 are associated with risk of stroke recurrence in lacunar infarct patients. Biochem Biophys Res Commun 2010; 398:212-6. [DOI: 10.1016/j.bbrc.2010.06.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
|
4
|
Chen J, Yang T, Yu H, Sun K, Shi Y, Song W, Bai Y, Wang X, Lou K, Song Y, Zhang Y, Hui R. A functional variant in the 3'-UTR of angiopoietin-1 might reduce stroke risk by interfering with the binding efficiency of microRNA 211. Hum Mol Genet 2010; 19:2524-33. [PMID: 20378606 DOI: 10.1093/hmg/ddq131] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Angiopoietin-1 is a vascular strengthening factor during vascular development and a protective factor for pathological vascular inflammation and leakage. Brain vascular leaking and inflammation are two important pathological processes of stroke; therefore, we hypothesized that variants of the microRNA-binding site in angiopoietin-1 would affect its expression and confer a risk of stroke. To test our hypothesis, a predicted microRNA-binding site was found in the 3'-UTR of angiopoietin-1 using bioinformatics; variant rs2507800 was identified to be located in the miR-211-binding site of angiopoietin-1. Secondly, the effects of the identified variant on angiopoietin-1 translation were assessed using a luciferase reporter assay and ELISA. We found that the A allele of rs2507800 suppressed angiopoietin-1 translation by facilitating miR-211 binding, but not the T allele. Subjects carrying the TT genotype had higher plasma angiopoietin-1 levels than those with the A allele. Finally, the association of the variant with stroke was tested in 438 stroke patients and 890 controls, and replicated in an independent population of 1791 stroke patients and 1843 controls. The TT genotype resulted in a significant reduction in overall stroke risk {OR, 0.51 [95% confidence interval (CI), 0.36-0.74], P = 0.0003}, ischemic stroke [OR, 0.56 (95% CI, 0.36-0.85), P = 0.007] and hemorrhagic stroke [OR, 0.46 (95% CI, 0.26-0.80), P = 0.007]. These results were confirmed in an independent study. Our results provide evidence that the TT genotype (rs2507800) in the 3'-UTR of angiopoietin-1 might reduce the risk of stroke by interfering with miR-211 binding.
Collapse
Affiliation(s)
- Jingzhou Chen
- Sino-German Laboratory for Molecular Medicine, Key Laboratory for Clinical Cardiovascular Genetics, Ministry of Education, FuWai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|